
Research Statement
Klaus v. Gleissenthall

Computer systems are often incredibly complex; to get them right, programmers have to make scores of minute
implementation choices, each of which has the potential to compromise the safety and security of the entire system.
The goal of my research is to make systems building easier by providing methods that help practitioners write
correct code while keeping additional programmer effort low.

Even though programming languages and verification research has advanced significantly along this path e.g., by
verifying correctness of distributed systems and security critical code through mathematical proof [1,3,7,17], most
existing techniques still suffer from two weaknesses: First, they focus on software in isolation, that is, they abstract
hardware through simple, idealized execution models. Real hardware is however full of fast paths and performance
optimizations which may cause it to diverge from the simple model’s behavior in subtle ways, e.g., through
secret dependent timing or microarchitectural side-channels. Because of this mismatch, security and correctness
guarantees for software operating on an idealized model may not carry over when run on real-world hardware.
Second, traditional verification techniques require tremendous user effort, which severely limits their adoption. My
research aims to address both challenges with the goal of shifting towards a world where programming languages
and verification techniques enable not only specialists but everyone to provide end-to-end correctness and security
guarantees for real world systems.

Current Research & Impact
I have worked on several projects towards this end. First, I have built a method called Iodine which allows to
devise and verify usage conditions under which a hardware design does not leak secrets through timing variation,
i.e., indeed behaves like its simple abstraction. By enforcing these conditions in software, verification methods
can provide true end-to-end guarantees for security critical code like cryptographic algorithms without having
to worry about the peculiarities of the actual hardware they are running on. Iodine can be easily applied to
existing hardware designs: we have used Iodine to find and verify usage conditions for a number of open-source
hardware designs including RISC-processors, FPUs, and crypto cores. If usage conditions are hard to obtain,
e.g., when source code is unavailable, software mitigations have to embrace the hardware’s original complexity:
Through my work on Iodine, I became interested in mitigating the effect of speculative execution. In contrast to
simple sequential execution, speculative execution allows the processor to guess the outcomes of branches, jumps or
address calculations before their final values are known. As a result, sensitive software like cryptographic algorithms
may violate guarantees that were given for the simple sequential model when executed under speculation. I have
addressed this mismatch through two contributions: first, an operational semantics that precisely describes the
behavior of actual hardware under speculation and second, a method called Blade which provably removes
speculative execution induced bugs by automatically inserting a minimal number of speculation barriers. This
work also lead us to discover speculative execution bugs in popular crypto libraries including Open SSL and
libsodium and even in verified libraries like HACL* [17]. Finally, in order to make verification methods easier to
use, I have built a framework that reduces the proof burden in verification techniques for distributed systems
by exploiting symmetry and commutativity. My work on distributed systems has already influenced research in
other areas: a recent paper in approximate computing uses our approach to apply techniques for proving reliability
guarantees for approximate computing in sequential programs to distributed systems [6]. I will now describe these
projects in more detail and then discuss avenues for future research.

1



Security: Bridging the Hardware/Software Gap

Verification: Eliminating Timing Channels in Hardware (Usenix Security’19) Hardware often serves
as the root of trust in computer systems. Unfortunately, this trust is not always well-earned. For example, recent
attacks like Foreshadow [4] and Tpm.fail [10] have shown that even hardware security features like trusted platform
modules and hardware enclaves leak their secrets via timing side channels, which allow an attacker to learn
enough information to guess secrets simply by observing how long a computation takes to execute. These leaks
are particularly devastating, since hardware security features often form the last line of defense. Iodine helps
to prevent such leaks by devising – and automatically verifying – conditions under which a hardware design is
constant time, i.e., free of timing channels.

The core technical challenge that Iodine had to solve to make this verification possible is, perhaps surprisingly,
about concurrency: modern hardware simultaneously processes hundreds of pipelined instructions that may mu-
tually influence one another. But how can we measure the timing of such a computation? My work addresses this
challenge through a new notion of timing that is suitable for concurrent hardware computations. Iodine tracks
for each register, which computations are still live, i.e., active in the current cycle, and requires that the same
computations are live, independently of which secrets the computation operates on.
Foundations for Speculative Execution (PLDI’20) Another issue at the interface between hardware and
software has recently overturned existing ways of writing secure systems: Speculative execution attacks like Spec-
tre [8] and Fallout [9] threaten confidentiality guarantees of well-trusted and even verified crypto libraries. My
work showed that even cryptographic libraries like HACL* which have been proven free of timing side channels do
in fact contain timing channels that exploit speculative execution. At its core, this mismatch between proof and
reality comes from considering incomplete foundations. While traditional models assume that programs are exe-
cuted sequentially, modern hardware internally performs speculative execution – a kind of concurrent computation
that allows the processor to guess outcomes of branches, jumps or address calculations before their final values
are known. I have worked on an operational semantics [5] that captures the effects of speculative execution and
therefore forms a basis for security guarantees. We used our semantics to define a basic notion of correctness and
used it as a basis for a symbolic execution analysis which discovered vulnerabilities in widely used crypto libraries
including Open SSL and libsodium.
Fixing Speculative Execution Bugs (Under Submission) These discoveries leave us an in an unfortunate
position, as many of our of core cryptographic algorithms are vulnerable. Yet, there are no satisfying fixes. Specu-
lation can be stopped by inserting memory fences (akin to adding synchronization to a concurrent computation),
but current methods insert fences either via heuristics that provide no guarantees for the resulting fix, or exhaus-
tively, after every memory load, which leads to unacceptable performance cost. My work on Blade [15], offers a
solution to this predicament by proposing a general technique to automatically and provably eliminate speculative
execution bugs in cryptographic software. Blade builds on a simple insight: Rather than prohibiting speculation
altogether, it suffices to cut the data-flow from expressions that speculatively introduce secrets to those that leak
them. To cut the data flow, my work introduces a new primitive called protect, which turns expressions that may
contain secrets into innocuous ones, and which can be implemented via existing architectural mechanisms. Blade
implements this approach via a type system that automatically synthesizes a minimal number of protect calls (via
type inference) and proves that the program is indeed secure (via type checking).

Simpler Proofs For Implementations of Distributed Systems (POPL’19 & OOPSLA’17)

Writing correct distributed systems is notoriously difficult. Engineers not only have to come up with correct
algorithms, they also need to ensure that no additional mistakes are introduced when the algorithm is implemented.
To make it easier to write implementations that are free of protocol and implementation errors, verification
researchers have devised methods that verify correctness via mathematical proof. But unfortunately, these methods
are costly, which limits their adoption. For example, Microsoft’s verified key-value store took 3.7 person years to
complete. I have worked on simplifying verification by exploiting the following observation: while it is hard to verify
the correctness of an arbitrary system, the systems that are written in practice are well-structured and therefore
a lot easier to verify. I developed this idea in a method called Pretend Synchrony [2, 12], which aims to reduce
verification effort by soundly treating distributed cloud programs as if they were executing in lock-step on a single
machine thereby reducing the number of relevant behaviors – and with it proof complexity.

2



Research Methodology and Future Research
My research methodology is to pick an application domain where end-to-end correctness and confidentiality guar-
antees are hard to maintain manually, and find techniques from PL and verification that help to (automatically)
enforce these properties. Once I have an idea of how to approach the problem, I implement a prototype and apply
it to real world examples. This often helps to guide and refine the theory. In future work, I plan to explore the
two lines of research outlined above – security at the interface of hardware and software, and exploiting structure
in distributed systems – using this methodology.
Side-channel Free Hardware Enclaves Hardware enclaves like Intel SGX, ARM TrustZone promise a means
of outsourcing computation to an untrusted provider while maintaining data confidentiality and integrity. Often
they are formed by an amalgam of basic hardware features and the software that’s driving them. In such a setting,
software drivers need to be aware of the peculiarities of the hardware features they rely on, as illustrated by recent
attacks like Foreshadow [4]. I want to build on my work on hardware verification [14] and side channels [5, 15],
to create automated techniques for devising usage conditions, and verifying isolation and side channel-freedom in
hardware enclaves.
Verifying Hardware Software Contracts More generally, hardware and the software that utilizes it need
to share a common set of assumptions, beyond the granularity of the instruction set architecture. Using my
experience with language based mitigations of side-channels [15] and hardware verification [14], I propose to make
these assumptions explicit by designing a language and verification method that describes the interface between
hardware and the compiler, and allows verifying their composition. In particular, this will involve connecting
hardware mitigations like [16] and software mitigations like Blade.
High-level/Functional Language For Secure Hardware Instead of mitigating the shortcomings of existing
hardware, we can write new, correct by construction circuits. This is particular interesting for custom hardware
accelerators, which are becoming more prevalent due to the end of exponential growth in hardware performance.
Unfortunately, existing programming abstractions of hardware description languages like Verilog make it hard to
write correct, performant and secure hardware. Building on my experience in applying language based techniques
to distributed systems and side-channel attacks [2, 15] and my background in verification [11–14], I want to build
a high-level language abstraction and verification support for hardware.
Pretend Synchrony for Serverless Computing Serverless computing allows distributing a given functionality
transparently across servers. But since each server is potentially shared by a large number of computations from
different origins, it becomes crucial to ensure that secrets cannot be leaked from one computation to another.
I think that a promising path towards this goal is to follow the idea of Pretend Synchrony by enforcing that
computations are well-formed in that each distributed computation corresponds to an equivalent sequential one.
This idea can be applied more generally: any verification method that has been developed for sequential programs
can be turned into verification methods for distributed systems via Pretend Synchrony. This is interesting for
information flow control, differential privacy, or robustness notions and many others.
Proving Universal Composability of Cryptographic Implementations A similar idea can be applied to
simplify proofs of cryptographic protocols. The gold standard for proving such protocols secure is universal com-
posablity (UC): proving universal composablity of a protocol ensures that, even if the protocol is composed with
an arbitrary attacker, and embedded inside a larger distributed system that is interacting with it. I want to use
my experience in verifying distributed systems to build a framework that simplifies writing formal proofs for
UC, by exploiting restrictions to a “well-structured” language fragment, and which allows to produce executable,
performant protocol implementations.
Programming Abstractions for Non-Volatile Memory Non-volatile memory has emerged as a fast, low-
energy alternative to traditional storage. However, maintaining data-consistency in the presence of failures makes
its use challenging. I want to explore how to make well-structured use of non-volatile memory in code, guide
programmers to write such code, and finally exploit structure for verification.

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. Verifying

constant-time implementations. In USENIX Security.
3



[2] Alexander Bakst, Klaus v. Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala. Verifying distributed programs
via canonical sequentialization. In OOPSLA, 2017.

[3] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay
Rane, Srinath Setty, and Laure Thompson. Vale: Verifying high-performance cryptographic assembly code.
In USENIX Security, 2017.

[4] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In Usenix Security, 2018.

[5] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Deian Stefan, Tamara Rezk, and Gilles Barthe.
Towards constant-time foundations for the new spectre era. In PLDI’20, 2019.

[6] Vimuth Fernando, Keyur Joshi, and Sasa Misailovic. Verifying safety and accuracy of approximate parallel
programs via canonical sequentialization. In OOPSLA, 2019.

[7] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. Ironfleet: Proving practical distributed systems correct. In SOSP, 2015.

[8] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In Security and Privacy, 2019.

[9] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck, Daniel Genkin, Daniel Gruss,
Frank Piessens, Berk Sunar, and Yuval Yarom. Fallout: Reading kernel writes from user space.

[10] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. Tpm-fail: TPM meets timing and
lattice attacks. In USENIX Security, 2020.

[11] Klaus v. Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Cardinalities and universal quantifiers for
verifying parameterized systems. In PLDI, 2016.

[12] Klaus v. Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala. Pretend syn-
chrony: Synchronous verification of asynchronous distributed programs. In POPL, 2019.

[13] Klaus v. Gleissenthall, Boris Köpf, and Andrey Rybalchenko. Symbolic polytopes for quantitative interpola-
tion and verification. In CAV, 2015.

[14] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. Iodine: Verifying constant-time
execution of hardware. In USENIX Security, 2019.

[15] Marco Vassena, Klaus v. Gleissenthall, Rami Gökhan Kici, Deian Stefan, and Ranjit Jhala. Automatically
eliminating speculative leaks with blade. In Under Submission, 2019.

[16] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher.
Speculative taint tracking (stt): A comprehensive protection for speculatively accessed data. In MICRO,
MICRO.

[17] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. Hacl*:
A verified modern cryptographic library. In CCS, 2017.

4


