
Refinement Type Refutations

ROBIN WEBBERS, Vrije Universiteit Amsterdam, Netherlands

KLAUS VON GLEISSENTHALL, Vrije Universiteit Amsterdam, Netherlands

RANJIT JHALA, University of California, San Diego, USA

Refinement types combine SMT decidable constraints with a compositional, syntax-directed type system
to provide a convenient way to statically and automatically check properties of programs. However, when
type checking fails, programmers must use cryptic error messages that, at best, point out the code location
where a subtyping constraint failed to determine the root cause of the failure. In this paper, we introduce
refinement type refutations, a new approach to explaining why refinement type checking fails, which mirrors
the compositional way in which refinement type checking is carried out. First, we show how to systematically
transform standard bidirectional type checking rules to obtain refutations. Second, we extend the approach
to account for global constraint-based refinement inference via the notion of a must-instantiation: a set of
concrete inhabitants of the types of subterms that suffice to demonstrate why typing fails. Third, we implement
our method in HayStack—an extension to LiqidHaskell which automatically finds type-refutations when
refinement type checking fails, and helps users understand refutations via an interactive user-interface. Finally,
we present an empirical evaluation of HayStack using the regression benchmark-set of LiqidHaskell, and
the benchmark set of G2, a previous method that searches for (non-compositional) counterexample traces by
symbolically executing Haskell source. We show that HayStack can find refutations for 99.7% of benchmarks,
including those with complex typing constructs (e.g., abstract and bounded refinements, and reflection), and
does so, an order of magnitude faster than G2.

CCS Concepts: • Software and its engineering→ Software verification.

Additional Key Words and Phrases: Refinement Types, Counterexamples, Type Refutations

ACM Reference Format:

Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala. 2024. Refinement Type Refutations. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 305 (October 2024), 26 pages. https://doi.org/10.1145/3689745

1 Introduction

Refinement types have proven to be an especially effective way to specify and statically verify
properties of programs. The programmer annotates types with logical predicates which define
the legal subsets of values for that type’s inhabitants. For example, we might specify a type for
non-negative integers as type Nat = Int{v:0 <= v}. The type-checker then uses an SMT solver
to make sure that the restrictions enforced by the types are upheld throughout the program. Con-
sequently, refinement types have been used to specify a variety of correctness properties including

Authors’ Contact Information: RobinWebbers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, r.m.a.webbers@vu.nl;
Klaus von Gleissenthall, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, k.freiherrvongleissenthal@vu.nl; Ranjit
Jhala, University of California, San Diego, San Diego, USA, rjhala@ucsd.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART305
https://doi.org/10.1145/3689745

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0000-3493-837X
HTTPS://ORCID.ORG/0000-0003-0826-4425
HTTPS://ORCID.ORG/0000-0002-1802-9421
https://doi.org/10.1145/3689745
https://orcid.org/0009-0000-3493-837X
https://orcid.org/0000-0003-0826-4425
https://orcid.org/0000-0002-1802-9421
https://orcid.org/0000-0002-1802-9421
https://doi.org/10.1145/3689745
https://creativecommons.org/licenses/by/4.0/

305:2 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

data structure invariants [Dunfield 2007; Kawaguchi et al. 2009], security properties [Bengtson
et al. 2011; Fournet et al. 2011; Lehmann et al. 2021], hardware ISA specifications [Armstrong et al.
2019], and resource constraints [Knoth et al. 2020]; they were used to verify code developed in
Haskell [Vazou et al. 2014], Java [Gamboa et al. 2023] Racket [Kent et al. 2016], Ruby [Kazerounian
et al. 2017], Rust [Lehmann et al. 2023], Scala [Hamza et al. 2019], and TypeScript [Vekris et al.
2016].
The unreasonable effectiveness of refinement types stems from their compositional nature. Verifi-
cation proceeds by exploiting a syntactic discipline to glue together invariants (refinements) of
sub-components in a type-directed fashion that scales up to higher-order functions, datatypes and
polymorphism. Consequently, type-based compositionality allows for considerable automation:
only core library functions need to be annotated and all other refinements can be automatically
synthesized by a solver. For example, consider the following Haskell code, that uses a polymorphic
foldr1 function to compute the maximum of a non-empty list of integers.

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 = ...

max :: Ord a => a -> a -> a
max x y = if x > y then x else y

test1 :: Nat
test1 = foldr1 max [4, 3, 2, 1]

A refinement type-checker like LiqidHaskell can automatically verify the above by inferring that
foldr1 is being invoked with Nat and then exploiting parametricity to conclude that the output
must also be at Nat.
Refinement type-based verification is delightful when it works. When the code is accepted by the
checker, the programmer can rejoice in the fact that all their specified correctness properties are
indeed guaranteed to hold. However, when type checking fails, verification turns unpleasant, as
the type-checker will often provide cryptic clues as to what went wrong — at best a particular line
number where the assertion, precondition or postcondition check failed. This leaves the programmer
scratching their heads to work out the root-cause of the typing failure, and what to change to make
verification succeed. For example, the following variant of the code above would be rejected by the
type-checker with the meager feedback that it cannot prove that test2 is in fact Even

type Even = Int{v:mod v 2 = 0}
test2 :: Even
test2 = foldr1 max [4, 3, 2, 1]

The delphic feedback from failed typing is not just an implementation issue. Paradoxically, it is a
consequence of the compositionality which makes refinement types so effective in the first place!
Unlike other (non-compositional) approaches, most notably model checking [Clarke et al. 1999] and
symbolic execution [Hallahan et al. 2019; King 1976] we cannot simply produce a counterexample
trace — a concrete execution that shows why the property fails. Indeed, in test2 no such trace
exists because test2 evaluates to 4 which is very much Even. Instead, the key challenge is to
devise a way to explain why typing failed that mirrors the compositional way in which refinement
type checking is carried out in the first place. This challenge is heightened by automation. If the
type-checker synthesizes type annotations, our explanation needs to show why no possible solution
for the yet-to-be-synthesized refinements can make the type checking work.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:3

In this paper, we introduce refinement type refutations, a new approach to explaining why refinement
type checking failed. We develop our method via four concrete contributions.
1. Type Checking Refutations (§ 3) Our first contribution is the notion of a refinement type
refutation: a precise formalization of what a counterexample to a typing derivation should look
like. Our calculus starts with a standard bidirectional refinement checker [Jhala and Vazou 2021]
which has rules for establishing judgments Γ ⊢ e ⇐ t — which say that the term e can be checked
to have type t in environment Γ — and Γ ⊢ e ⇒ t — which say that the type t can be synthesized
for the term e in environment Γ. Our first insight is that we can represent refutations as two dual
judgments of the form Γ ⊢ e⇍ t — which say that the term e cannot be checked to have type t
in environment Γ — and Γ ⊢ e⇏ ! — which say that no type can be synthesized for the term e in
environment Γ. We then show how to systematically transform the rules that establish checking
and synthesis judgments to derive their refutation counterparts, to get a sound and complete notion
of typing refutations.
2. Type Inference Refutations (§ 4) Our second contribution is to extend our notion of refutations
to the setting where unknown refinements must be inferred via a global solver, e.g., due to parametric
polymorphism, as in the test1 and test2 examples above. The key challenge in this setting is
to show that no solution for the unknown refinements allows the type checking to succeed. Our
second insight, is that we can solve the above problem via the notion of a must-instantiation: sets
of concrete values that must inhabit the unknown refinements for the code to type check, and yet,
whose presence makes it impossible to prove some verification goal. For example, in test2 above,
the type variable a for foldr1 must be instantiated with the set of integers Int containing 3 — as
that value is in the list passed into foldr1— and yet, since the output type of foldr1 says the result
can be any of those integers (including 3) we cannot prove the output is Even. We show how to
extend the refutation rules to formalize the above intuition, by describing how must-instantiations
can be used to refute verification, and how the instantiations can themselves be justified by the
constraints imposed by typing.
3. Implementation (§ 5) Our third contribution is an implementation of type refutations in
HayStack: an extension to LiqidHaskell which automatically finds refutations when refinement
typing fails. HayStack systematically searches for must-instantiations by reducing the (Horn)
constraints produced by refinement typing into an imperative first-order program with assertions
following the recipe of [Jhala et al. 2011]. HayStack then carries out a bounded symbolic execution
[King 1976] on those imperative programs to find paths that violate an assertion. Concrete values,
derived from SMT models for those paths, can then be mapped back to obtain must-instantiations
that yield a refinement type refutation. To help users understand refinement type refutations,
we built an interactive front-end called Explorer, which allows the user to interactively expand
refinement type refutations to understand how must-instantiations are derived.
4. Evaluation (§ 6) Our final contribution is an evaluation that determines whether HayStack
can efficiently find refutations for real-world typing failures. To this end, we run HayStack on
two sets of benchmarks. First, we show that on the regression benchmarks of LiqidHaskell
comprising about 200 files HayStack successfully finds refutations for 99.2% of the files in on
average 3.2 seconds. Second, we compare HayStack against G2 [Hallahan et al. 2019] which
produces (non-compositional) counterexamples by performing symbolic execution directly on
the Haskell source code to find traces that violate an input type (precondition) or output type
(postcondition). By contrast,HayStack directly refutes the typing derivation, and therefore exploits
the compositionality of type checking in its search for refutations. Consequently, we show that
on the G2 benchmarks, comprising a data set of refinement type errors in a student programming

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:4 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

Fig. 1. Output of LiquidHaskell without HayStack for test2.

(a) Root violation with violating instance. (b) Must-instantiation that justifies the instance.

Fig. 2. Output of Explorer using the type-refutation produced by HayStack for test2.

assignment of about 1500 files, HayStack finds refutations for 99.7% of the files an order of
magnitude faster than G2 (13.8 vs 145.9 seconds). To assess the quality of counterexamples produced
by HayStack, we present a case study (§ 6.1) – an interpreter for a simple arithmetic language, and
show how Explorer helps the user understand the counterexample.

2 Overview

We start by discussing how HayStack and our interactive tool Explorer help users debug verifica-
tion failures.

2.1 Using HayStack and Explorer

Consider again example test2 from the introduction. Figure 1 shows LiqidHaskell’s output
without HayStack. The output highlights the line of code that produced the verification failure,
but beyond that, the user gains little insight into what went wrong.
By contrast, Figure 2 shows the output of Explorer on the type-refutation produced by HayStack.
Figure 2a shows the first screen displayed by Explorer. The red text in the topmost box of the
screen tells us that we can derive violating instance 3 for type Even. The lower part of the screen
gives us an environment binding variables to concrete values that produce the violation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:5

Clicking on the highlighted variable self (the bound variable of the refinement) in the environment
produces the screen in Figure 2b, which tells us how themust-instantiationwas derived. In particular,
the green text in the topmost part of the screen highlights that must-instantiation 3 comes from
list [4, 3, 2, 1].

2.2 Refinement Type Checking

Next, we give a high-level overview of our approach to type refutations, using a series of small
examples to illustrate refinement types, type checking, and our notion of type refutations.

Refinement Types Say wewant to implement a division operation. As division by zero is undefined
and will result in an error that we cannot recover from, we want to make sure that we eliminate the
possibility of division by zero at compile time. Refinement types allow us to enforce this property
by annotating the basic integer type with a predicate that constrains the integer divisor to be not
equal to zero. We can then use this definition in the type signature of the division function:

type NonZero = Int{v:v /= 0}
div :: x:Int -> y:NonZero -> Int{v:v == x / y}

The signature says that the second input to div must be non-zero, and that the output is the result
of dividing x by y (i.e., the logical division operation implemented by the SMT solver’s decision
procedures.) Refinement type checking will ensure that every caller of div passes in divisors that
can be shown to be non-zero at compile time.

When Typing Goes Wrong Now suppose that we want to use div to define a division over
natural, i.e., non-negative, integers, defined as:

type Nat = Int{v:0 <= v}

The denominator argument is converted into a natural by taking its absolute value, via a function
abs :: Int -> Nat. The division of two natural numbers will give us a new natural number,
which is what we state in the return type of ex0.

ex0 :: Nat -> Int -> Nat
ex0 num den = div num (abs den)

Type checking will fail for this code as it is incorrect. However, as the type check will return a
non-descript error message, we’re left guessing about the cause. In this case, the reader may notice
that this is because the absolute value of an integer will give us a natural number. As 0 is a natural,
this violates the contract of div which constrains its denominator to be non-zero. We might try to
fix the program by strengthening the denominator argument to be NonZero.

ex1 :: Nat -> NonZero -> Nat
ex1 num den = div num (abs den)

Perhaps surprisingly, verification of the modified example still fails. This time, our specification
for ex1 is correct, yet the verifier cannot verify the implementation. This happens because the
type-checker does not have enough information about abs to rule out an error. As type checking
is modular, all the type-checker knows about abs is what it says on the tin: i.e., its signature
Int -> Nat, which says the output could be any non-negative integer. Thus, as far as the type
checker is concerned, abs could be implemented as shown below, which would be consistent with
its signature, yet violate the specification of ex1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:6 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

abs :: Int -> Nat
abs _ = 0

We want to help the user debug such typing failures. But to do so, we first need to take a closer
look at how types are checked in the first place.

Subtyping To validate refinement types, the type-checker will generate verification conditions
(VCs) corresponding to subtyping constraints. In short, subtyping constraints ensure that the actual
expressions used in the program obey the refinements prescribed by the type.
For example, for ex0, the refinement checker will try to prove that the actual type Nat of the second
argument to div, that is (abs den), is a subtype of the expected type NonZero, producing the
following constraint, where ≺: is the subtyping relation, and Γ denotes an environment mapping
variable names to types.

Γ ⊢ Nat ≺: NonZero

Verification Conditions This subtyping constraint requires us to prove that we can use an expres-
sion of type Nat, whenever we expect an expression of type NonZero. Internally, this constraint
gets translated into the following verification condition (VC) to be proved by an SMT solver.

∀𝑣 . 0 ≤ 𝑣 ⇒ 𝑣 ≠ 0

As this implication is not valid, the subtyping constraint, and thereby the type-derivation fail. Note
that other subtyping constraints that need to be checked to establish a positive typing judgement —
e.g., the subtyping check Γ ⊢ Nat ≺: Int for the first argument of div — are not needed to explain
why the function cannot be typed, and hence can be omitted when explaining why typing failed.
We formalize this idea via the notion of a type refutation.

2.3 Type Checking Refutations

Our formalization of refinement type refutation builds on the standard bidirectional refinement
type system proposed in [Jhala and Vazou 2021].

Typing Judgments In this system, type checking is represented by a judgement Γ ⊢ e ⇐ t which
says that under environment Γ, expression e can be checked to have type t. The type system is
bidirectional [Dunfield and Krishnaswami 2021; Pierce and Turner 2000], and therefore makes use
of a second judgement Γ ⊢ e ⇒ t saying that under environment Γ, we can synthesize type t for the
expression e.

Refutation Judgments We represent type refutations via two judgements which intuitively
correspond to the refutations of the classical checking and synthesis judgements. The first check-
refutation judgment Γ ⊢ e⇍ t, states that expression e cannot be typed as t under environment Γ.
The second synthesis-refutation judgement Γ ⊢ e⇏ !, says that under Γ, we cannot synthesize any
type for expression e. The refutation derives non-typing of an expression e via the following two
steps:

• First, it traverses e towards the faulty expression: the sub-expression of e that is responsible for
the typing failure.

• Second, the refutation judgement shows that the faulty expression violates a subtyping con-
straint, which we represent via a non-subtyping judgement Γ ⊢ s ⊀: t, which says that under
environment Γ, type s is not a subtype of t.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:7

Thus, a type refutation captures the core of a violation that we want to show to the user: what is
the faulty subexpression, and why is it faulty. HayStack and its interactive user interface Explorer
allow the user to inspect this derivation to help them understand the typing failure.

Type Refutation for ex1 Let us now look at the type refutation that shows that the definition of
ex1 does not check for its type signature. We specify our notion of type refutations via a set of
inference rules, which we will describe in Section 3. For now, we will give an informal overview of
how they allow us to derive refutations. We start with the following goal, where we desugar the
arguments of ex1 into lambda abstractions.

Γ ⊢ \num den -> div num (abs den) ⇍ Nat -> Int -> Nat

The refutation is made under an environment Γ, which contains declarations of functions that are
in scope. In this example, the initial environment contains the declarations of div and abs.
We start by traversing towards the faulting expression. For this, we apply our rule for lambda
expressions ([Ref-Lam]) — the dual of the usual rule to check the type of a _-abstraction—which adds
the arguments and their respective types to the environment Γ′ � Γ ; num :: Nat; den :: Int.
With this extended environment, our goal is to prove the inner expression does not type.

Γ′ ⊢ div num (abs den) ⇍ Nat

We notice that the expression cannot be given any type (let alone Nat), as it violates a subtyping
constraint. We therefore use a rule ([Ref-Fail]) that lets us deduce a synthesis-refutation, that is, we
show Γ ⊢ e⇍ t by showing Γ ⊢ e⇏ !.

Γ′ ⊢ div num (abs den) ⇏ !

Next, we locate the cause of error in the function argument, rather than the function body (via rule
[Fail-App-Arg]). This rule uses the type synthesis judgement to synthesize a type for the partial
application (div num) from the environment which yields NonZero -> Int, that is, (div num)
expects a NonZero integer. This leads to a new goal which requires us to show that argument
(abs den) does not satisfy this input constraint.

Γ′ ⊢ abs den ⇍ NonZero

We now have found the faulty subterm and can use a rule ([Ref-Syn]) to show that its inferred type
does not match its expected type, that is, Γ ⊢ e ⇒ s but Γ ⊢ s ⊀: t. Using the synthesis judgement
from the original type-system, we find that (abs den) has type Nat (the output type of abs). We
therefore need to show that the inferred type for (abs den) — namely Nat — is not a subtype of
NonZero.

Γ′ ⊢ Nat ⊀: NonZero

We can prove this statement via a call to the SMT solver which concludes the type refutation. The
solver can additionally create a concrete value that refutes the subtyping constraint. In our case,
this instance says that (abs den) could evaluate to 0, which indeed describes the root cause of the
failure.

Fixing the Violation With this refutation, it becomes clear that verification failed since the
type-checker doesn’t have enough information about abs to rule out the violation. We can fix this
problem by helping the verifier with a refinement for abs that stipulates the output is non-zero iff
the input is non-zero:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:8 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

abs :: x:Int -> Nat{v:x /= 0 <=> v /= 0}

With this new type, the program ex0 is accepted.

2.4 Type Inference Refutations

So far, our verification conditions can be easily checked by an SMT solver, even if the user does not
annotate types for subexpressions like partial function applications. However, with the addition of
simple conveniences like local variables, branches, recursion, polymorphism and collections, this is
no longer possible, as we must first infer suitable refinements for various sub-expressions.
For example, consider the polymorphic function max shown below, and suppose that we wish to
verify that taking the max of 2 and an Even number will result in an even number.

max :: Ord a => a -> a -> a

ex2 :: Even -> Even
ex2 y = max 2 y

The type-checker can easily synthesize types for the expression 2 (via the rule that types primitive
constants), and y (via the rule that looks up the type of the variable bound in the given context)

2 :: Int{v:v == 2}
y :: Even

However, as max is polymorphic, we need a way to appropriately instantiate the type variable in its
signature with a refinement type that can be ascribed to both the arguments 2 and y. One option
would be to require a user annotation, but this would be severely hamper usability (owing to the
ubiquity of polymorphic instantiation). Instead, refinement type-checkers like LiqidHaskell
automatically infer suitable refinements for polymorphic instantiation sites by: (1) representing
the missing annotations with template variables representing the unknown refinements, and then
(2) computing an assignment from the template variables to concrete refinement predicates that
suffice to establish the desired typing judgment. For our example, the type-checker therefore
creates a fresh refinement variable ^, to represent the fact that the type parameter of max is being
instantiated with the (unknown) refinement type Int{v:^(v)}. Thus, at the call-site inside ex2
max is instantiated to the monomorphic type:

max @Int{v:^(v)} :: Int{v:^(v)} -> Int{v:^(v)} -> Int{v:^(v)}

Next, the type-checker produces the following subtyping constraints over the unknown refinement
^ . The first two constraints come from the arguments 2 and y which need to satisfy the constraints
placed on the inputs of max. The last constraint encodes that the output needs to satisfy the
postcondition on ex2, that is, ex2 returns an even number.

∅ ⊢ Int{v:v == 2} ≺: Int{v:^(v)}
∅ ⊢ Even ≺: Int{v:^(v)}
∅ ⊢ Int{v:^(v)} ≺: Even

We cannot query an SMT solver with these constraints, as it does not know how to reason about
these template variables. Instead, happily, the constraints correspond to Constrained Horn clauses
(CHC), which can be solved by existing solvers [Cosman and Jhala 2017; Grebenshchikov et al.
2012]. For our example, the solver can produce the solution ^(v) ↦→ mod v 2 == 0which satisfies
the subtyping constraints and therefore verifies ex2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:9

Type Refutations for Unknown RefinementsWhile refinement inference makes refinement
typing more convenient for the programmer, it makes it harder to refute a typing judgement! If
our subtyping constraints contain an unknown refinement ^ , we need to show no possible solution
for ^ satisfies all subtyping constraints. Consider the following modification of our example above
where we try to show that the maximum value of 1 and an integer is even.

max :: Ord a => a -> a -> a
ex3 :: Even -> Even
ex3 y = max 1 y

Clearly, this program should not type-check as it is incorrect. The type-checker produces the
following three subtyping constraints.

Γ ⊢ Int{v:v == 1} ≺: Int{v:^(v)} (ℓ1)
Γ ⊢ Even ≺: Int{v:^(v)} (ℓ2)
Γ ⊢ Int{v:^(v)} ≺: Even (ℓ3)

Refutation via Must-Instantiation Our type-refutation derivation needs to show that the sub-
typing constraints will fail for any possible choice for unknown refinement ^. Intuitively, each
refinement (unknown or not) corresponds to a set of possible values that can inhabit the corre-
sponding refinement type [Constable and Smith 1987; Rushby et al. 1998]. Thus, we generalize the
notion of refutations to the setting of unknown refinements, by synthesizing must-instantiations
— concrete sets of values that some template variables must contain — and that suffice to refute
some subtyping constraints. For our example, we can see that ^ (𝑣) must at least contain value
v == 1, due to the first constraint (ℓ1). This instantiation is enough to show that the third subtyping
constraint (ℓ3) cannot hold, as the following subtyping constraint is invalid.

Γ ⊢ Int{v:v == 1} ≺: Even

We formalize must-instantiations in two parts: First, we show how they can be used to refute
subtyping; Second, we show how they can themselves be justified, again via subtyping. Let us see
how must-instantiations are used and justified in our example, where we begin with the goal of
having to refute the type Even -> Even for ex3.

Using Must-Instantiations To use must-instantiations, we extend our refutation judgements with
an environment Σ that contains all must-instantiations needed to refute subtyping constraints. In
our example, Σ contains an instantiation of the unknown refinement ^ to value 1, that is, we have
Σ � [^ (𝑣) ↦→ℓ1 𝑣 == 1]. Here label ℓ1 says that the instance was derived from subtyping constraint
ℓ1. We use labels to ensure that all instances are indeed justified by some subtyping constraint, and
none are made up out of thin air. We collect labels via an environment 𝜎 . For our example, 𝜎 � ℓ1,
that is, our set of labels contains the single location ℓ1. Now, our goal is to show the following
type refutation where the [Int{★}] denotes that max is instantiated to an Int with an unknown
refinement ★:

Σ,𝜎,Γ ⊢ \y -> max [Int{★}] 1 y ⇍ Even -> Even

Environment Γ contains the signature of polymorphic function max, saying that max can be applied
for all base-types a. As before, we apply our rule for _-abstractions ([Ref-Lam]), which yields a
new environment Γ′ containing the input type: Γ′ � Γ; y :: Even. Our new goal now is to refute
that (max [Int{★}] 1 y) has type Even.

Σ,𝜎,Γ′ ⊢ max [Int{★}] 1 y ⇍ Even

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:10 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

We start by applying our rule ([Ref-Syn]) to indicate we have reached the faulty expression. We
now have to show that unknown refinement Int{𝑣 : ^ (𝑣)} does not subtype Even, that is, we get
the following non-subtyping obligation.

Σ,𝜎,Γ′ ⊢ Int{v:^(v)} ⊀: Even

We can discharge this obligation through the must-instantiation Σ = ^ (𝑣) ↦→ℓ1 𝑣 == 1, which says
that ^ (𝑣) must at least contain instance 𝑣 == 1, which violates the restriction from type Even.
Importantly, the rule checks that ℓ1 ∈ 𝜎 . This ensures that the instance is indeed justified by one of
the subtyping constraints used in the derivation.

Justifying Must-Instantiations The rest of the derivation will now have to justify the presence of
the must-instantiation 𝑣 == 1 in ^ (𝑣), that is, to justify ℓ1’s presence in 𝜎 . Our goal is to synthesize
type ^ (𝑣) for (max [Int{★}] 1 y) and build up 𝜎 as we go. Applying the synthesis judgement
of the original type system gives us the following goal, which we can discharge via a rule that
allows us to instantiate the unknown refinement of polymorphic function max to a fresh unknown
refinement ^ (𝑣).

Σ,𝜎,Γ′ ⊢ max [Int{★}] 1 ⇒ Int{v:^ (𝑣)} -> Int{v:^ (𝑣)} -> Int{v:^ (𝑣)}

This leaves us with the goal to show that we can check argument 1 against ^ (𝑣), from which we
want to derive our instance.

Σ,𝜎,Γ′ ⊢ Int{v:v == 1} ≺: Int{v:^ (𝑣)}

We can achieve this via our rule ([Sub-KVar]) for deriving must-instantiation. The rule allows us to
derive any 𝑣 satisfying the left hand-side of a subtyping constraint. In our case, this only leaves
instance 𝑣 == 1. Importantly, as the corresponding subtyping constraint is labeled with ℓ1, we can
justify ℓ1’s presence in 𝜎 . Finally, 𝜎 and ∅ get combined into 𝜎 by taking the union of all labels. This
completes the refutation.

3 Type Checking Refutations

We now formalize the ideas presented so far. We start with the rules for type refutations without
unknown refinements and introduce them into the language in Section 4. For now, we mark
everything which is not required until Section 4 with a box .

Language Figure 3 shows our target language, which consists of the simply typed lambda calculus.
The language is standard. We use integers and Booleans as base types. Base types can be refined with
predicates p from suitable first-order theories. Importantly, refinements may refer to all function
arguments that are in scope. Types are kinded as base for base types and star for everything else.
Environments are lists binding variables to types. We will later use type polymorphism, which
will require refinement templates. To keep our presentation focused, we omit other language
constructs like let-bindings, conditionals, recursive definitions, or pattern matching, however,
our implementation can handle the full Haskell language. Like polymorphism, let-bindings and
recursive definitions require must-instantiations due to refinement inference, but they add no
additional challenge to the theory.

Type Refutation Judgements We base our notion of type refutations on the standard refinement
type-system presented in [Jhala and Vazou 2021]. This system consists of two typing judgements:
Γ ⊢ e ⇐ t which says that under environment Γ, expression e can be checked to have type t, and
judgement Γ ⊢ e ⇒ t which says that under environment Γ, we can synthesize type t for expression

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:11

Terms e ::= c constants
| x variables
| _x.e functions
| e x application
| e :: t type annotation
| Λ𝛼 :k.e type abstraction
| e[t] type application

Basic Types b ::= Int integers
| Bool booleans
| 𝛼 type variable

Refinements r ::= {v:p} known
| {★} hole
| {v:̂ (x̄)} template variable

Types t, s ::= b{r} refined base
| x:s → t dependent function

Kinds k ::= B base kind
| ★ star kind

Environments Γ ::= ∅ empty
| Γ; x :: t variable binding
| Γ;𝛼 :: k type variable binding

Σ ::= ∅ empty
| Σ;^ (x̄) ↦→ℓ v̂ template instance

𝜎 ::= ∅ empty
| 𝜎 ; ℓ label-set

Fig. 3. Syntax of Types, Terms, and Environments.

e. The main difference between checking and synthesis is that in checking, type t is an input to
the type-system, and in synthesis, t is an output. Our two type refutation judgments mirror these
judgements as follows.

• Checking Failures are represented by judgements of the shape Σ, 𝜎 , Γ ⊢ e⇍ t, and state that
we can show that type t is not a valid type for expression e in context Γ.

• Synthesis Failures are represented by judgements of shape Σ, 𝜎 , Γ ⊢ e⇏ !, and state that we
can show that there is no type we could synthesize for e under environment Γ.

To refute a typing derivation for the simply typed calculus, we need to identify a faulting expression
and traverse towards it. The failure in the faulting expression can either occur due to a type check
that isn’t met—a checking failure—or due to a synthesized constraint being violated—a synthesis
failure. In the process of traversing towards the faulting expression, we build up the necessary type
environment for the refutation. Once we have arrived at the faulting expression, we can refute it by
showing it does not subtype the goal type. As we will see, both our checking and synthesis failure
judgements use the synthesis judgement of the original type-system in [Jhala and Vazou 2021] to
find the type of sub-expressions. We will omit its definition as it is standard, however, we provide
the full rules in the Appendix.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:12 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

(^ (v̄) ↦→ℓ v̂) ∈ Σ ⇒ ℓ ∈ 𝜎 Σ , Γ ⊬ ∀v1:b.p1 ⇒ p2 [v2 ≔ v1]
Non-Sub-Base

Σ, 𝜎 , Γ ⊢ b{v1:p1} ⊀: b{v2:p2}

Σ, 𝜎 , Γ ⊢ s2 ⊀: s1
Non-Sub-Contra

Σ, 𝜎 , Γ ⊢ x1:s1 → t1 ⊀: x2:s2 → t2

Σ, 𝜎2, Γ ⊢ s2 ≺: s1 Σ, 𝜎1;𝜎2 , Γ; x2 :: s2 ⊢ t1 [x1 ≔ x2] ⊀: t2
Non-Sub-Co

Σ, 𝜎1 , Γ ⊢ x1:s1 → t1 ⊀: x2:s2 → t2

Σ , Γ ⊬ ∀x:b.p ⇒ c
Cex-Ext

Σ , Γ; x :: b{x:p} ⊬ c

SmtCex(c) Cex-Emp
Σ , ∅ ⊬ c

Σ;^ (x̄) ↦→ ŷ, ∅ ⊬ c[^ (x̄) ≔ ŷ]
Cex-KVar-Ins

Σ;^ (x̄) ↦→ ŷ, ∅ ⊬ c

Fig. 4. Rules for Non-subtyping and Non-entailment.

Σ, 𝜎2 , Γ ⊢ e ⇒ s Σ, 𝜎1;𝜎2 , Γ ⊢ s ⊀: t
Ref-Syn

Σ, 𝜎1 , Γ ⊢ e⇍ t

Σ, 𝜎 , Γ ⊢ e⇏ !
Ref-Fail

Σ, 𝜎 , Γ ⊢ e⇍ t

Σ, 𝜎 , Γ; x :: s ⊢ e⇍ t
Ref-Lam

Σ, 𝜎 , Γ ⊢ _x.e⇍ s → t

Γ ⊢ s ▷ t Γ ⊢ t : k Σ, 𝜎 , Γ ⊢ e⇍ t
Fail-Ann

Σ, 𝜎 , Γ ⊢ e :: t⇏ !

Σ, 𝜎2 , Γ ⊢ e ⇒ s → t Σ, 𝜎1;𝜎2 , Γ ⊢ y⇍ s
Fail-App-Arg

Σ, 𝜎1 , Γ ⊢ e y⇏ !

Σ, 𝜎 , Γ ⊢ e⇏ !
Fail-App-Fun

Σ, 𝜎 , Γ ⊢ e y⇏ !

Fig. 5. Rules for Checking and Synthesis Failures.

3.1 Non-Subtyping and Non-Entailment

We start by defining what to do once we have reached the faulty expression. Figure 4 shows our
definitions. In this step of the refutation, we want to show that the subtyping constraint belonging
to a faulty expression fails. We represent this failure via the judgement Γ ⊢ s ⊀: t which says that s is
not a subtype of t under environment Γ. As we have seen in the overview, subtyping constraints are

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:13

discharged by an SMT solver. We therefore need to define when the SMT constraint corresponding
to a subtyping constraint is not valid. We do this via a counterexample judgement Γ ⊬ c which says
that a constraint c is not entailed by environment Γ. Rule [Non-Sub-Base] defines non-subtyping
for base types. The rule says that for some non-subtyping relation b{v1 : p1} ⊀: b{v2 : p2} to hold,
it must not be the case that any value that satisfies p1 also satisfies p2 under environment Γ. Rules
[Non-Sub-Contra] and [Non-Sub-Co] define non-subtyping over function-types. Non-subtyping
over functions is contra-variant over inputs and co-variant over outputs. Both constraints need to
hold when we check a function’s type. To refute it, it is enough to show that one of them is not
met. Rule [Non-Sub-Contra] allows us to show that the subtyping relation did not hold because the
input was not contra-variant. Similarly, the rule [Non-Sub-Co] allows us to show that the subtyping
relation did not hold because the output was not co-variant.
Next, we define judgement Γ ⊬ c which says that constraint c is not valid under environment Γ. As
the SMT solver cannot reason about Γ directly, we need to move assumptions from the environment
into the constraint via rule [Cex-Ext]. That is, if for constraint c, the environment contains variable
x with refinement p, we extend the constraint to say it must hold for any x satisfying p.
Once the environment is empty, we can apply rule [Cex-Emp] such that an SMT solver may disprove
the final formula c by producing a counterexample. Such a counterexample proves that c was not
valid, and therefore that the corresponding subtyping constraint failed.

3.2 Checking and Synthesis Failures

To derive a checking failure, we have to traverse to a faulty expression, and then show that the
expression violates a subtyping constraint. We formalize this in rule [Ref-Syn], shown in Figure 5.
The rule derives a checking failure for type t and expression e by first synthesizing a type s for e
and then showing that s doesn’t subtype t.

Synthesis Failure If the current expression e is not the faulty expression, and we want to traverse
its sub-expressions, we can readily ignore the subtyping constraint between e’s synthesized type
and t. Instead, our goal becomes to show that we cannot synthesize any type for e as a subtyping
constraint is violated in one of its subexpressions. We formalize this reasoning in Rule [Ref-Fail].

Functions Rule [Ref-Lam] shows how to refute typing for functions. We extend the environment
with the argument and its respective type. With this, our new goal becomes to produce a checking
failure for the function body.

Annotations A type annotation shifts the goal from a synthesis failure to a refutation. Rule [Fail-
Ann] in Figure 5 says that to derive a synthesis failure for an expression e that is annotated with a
type t, it is enough to show that e fails to check for t. The expression Γ ⊢ t : k is a well-formedness
check on the type annotation, which checks if the type is closed under the environment. Specifically,
this ensures that the refinement cannot refer to undefined variables. Note that our implementation
only requires annotations for top level-functions and uses refinement inference to synthesize
missing annotations for intermediate terms.

FunctionApplications Synthesis failure for function applications can occur in one of two positions:
The function argument or the function body. The case where the faulty expression resides in the
argument of a function is captured by the rule [Fail-App-Arg]. The rule synthesizes a type for
function e and shows that argument y violates the input constraint of the function. Conversely, the
faulty expression can also reside in the function itself. This case is captured by rule [Fail-App-Fun].
Here, we can discard the argument and show a synthesis failure for the body.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:14 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

...
Γ′′ ⊢ div num ⇒ NonZero → Nat

...
Γ′′ ⊢ abs den ⇒ Nat

Non-Sub
Γ′′ ⊢ Nat ⊀: NonZero Ref-Syn

Γ′′ ⊢ abs den ⇍ NonZero Fail-App-Arg
Γ′′ ⊢ div num (abs den) ⇏ !

Ref-Fail
Γ′′ ⊢ div num (abs den) ⇍ Nat

Ref-Lam
Γ′ ⊢ _den. div num (abs den) ⇍ Int → Nat

Ref-Lam
Γ ⊢ _num den. div num (abs den) ⇍ Nat → Int → Nat

Fig. 6. Type Refutation derivation for example ex1 from the overview.

3.3 Example Derivation

We can now revisit example ex1 from Section 2. We want to derive a checking failure for ex1 for
type Nat -> Int -> Nat. Figure 6 shows the type refutation-tree. We start by applying [Ref-Lam]
twice to add the arguments to the environment. The resulting environments are shown below.

Γ � div :: x:Int -> y:NonZero -> Int{v:v == x / y}; abs :: Int -> Nat
Γ′ � Γ; num :: Nat
Γ′′ � Γ′; den :: Int

We end up with the goal of having to show that (div num (abs den)) fails to check against type
Nat. Since the failing expression resides in one of the sub-expressions, we apply rule [Ref-Fail] to
instead derive a synthesis failure. Since the faulting expression appears in the argument, we next
apply rule [Fail-App-Arg]. We first synthesize type NonZero -> Nat for function (div num), and
then get a new goal that requires us to show that argument (abs den) fails to check under its
expected type NonZero. We have now reached our faulting expression, and therefore apply rule
[Ref-Syn]. We first synthesize type Nat for (abs den) from the environment and get a new goal
that requires us to show that synthesized type Nat doesn’t subtype checked type NonZero. We
show the derivation for this goal below.

...
Γ′′ ⊢ ∀v:Int. v >= 0 ⇒ v /= 0 Non-Sub-Base

Non-Sub

We apply rule [Non-Sub-Base] which requires us to show that the constraint ∀v. v ≥ 0 ⇒ v ≠ 0
does not hold under environment Γ′′. This is derived by repeated applications of [Cex-Ext] to
extend the environment, and finally, rule [Cex-Emp] which discharges the constraint to the solver.

3.4 Soundness and Completeness

We prove soundness and completeness of our refutation judgements with respect to the original
judgements from [Jhala and Vazou 2021]. In short, our proof shows that for each original judgement
from [Jhala and Vazou 2021], the refutation judgement holds if and only if the original judgment
does not hold. For this, we extend the original rules to produce a constraint c, such that the
judgement holds if and only if the constraint is valid. We omit the definitions in the interest of
space, but include them in the Appendix. The following lemmas relate the original rules and their
extension.
Lemma (Γ ⊢ e ⇐ t ⇐⇒ Γ ⊢ e ⇐ t · · · c ∧ ⊨ c) ∧ (Γ ⊢ e ⇒ ⇐⇒ Γ ⊢ e ⇒ t · · · c ∧ ⊨ c)
Lemma Γ ⊢ c1 ⇐⇒ Γ ⊢ c1 · · · c ∧ ⊨ c

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:15

Ins-HoleΓ ⊢ b{★} ▷ b{v:̂ (x̄)} Ins-ConcΓ ⊢ b{v:p} ▷ b{v:p}

Γ ⊢ s1 ▷ s2 Γ; x :: s2 ⊢ t1 ▷ t2 Ins-FunΓ ⊢ s1 → t1 ▷ s2 → t2

Σ, 𝜎, Γ;𝛼 :: k ⊢ e⇍ t Γ ⊢ ∀𝛼 :k.t : ★
Ref-TLamΣ, 𝜎, Γ ⊢ Λ𝛼 :k.e⇍ ∀𝛼 :k.t

Σ, 𝜎, Γ ⊢ e⇏ ! Fail-TApp
Σ, 𝜎, Γ ⊢ e[t] ⇏ !

Fig. 7. Rules for Holes and Templates, and Type Abstractions.

Lemma Γ ⊢ s ⊀: t ⇐⇒ Γ ⊢ s ≺: t · · · c ∧ ⊭ c
Our main theorem is shown below.
Theorem (Γ ⊢ e⇍ t ⇐⇒ Γ ⊢ e ⇐ t · · · c ∧ ⊭ c) ∧ (Γ ⊢ e⇏ ! ⇐⇒ Γ ⊢ e ⇒ t · · · c ∧ ⊭ c)
We have proven the theorem by induction on the structure of the derivation. The proof can be
found in an Appendix and relies on the following main lemma, which states that non-derivation
and non-subtyping faithfully encode their positive counterparts.
Lemma (Γ ⊬ c1 ⇐⇒ Γ ⊢ c1 · · · c ∧ ⊭ c) ∧ (Γ ⊢ s ⊀: t ⇐⇒ Γ ⊢ s ≺: t · · · c ∧ ⊭ c)
We have proven soundness and completeness for the base system as presented up to this point. We
did not prove soundness and completeness for type inference refutations, which we will present in
the next section, but we believe that these properties also hold for the must-instantiation rules.

4 Type Inference Refutations

We now show how to extend type refutations to include polymorphism and unknown refinements.

Language Consider again Figure 3. We now extend our simply typed lambda calculus with poly-
morphism. This introduces new terms for type abstraction and type application, as shown in
the grayed-out parts of the figure. At the refinement type level, polymorphism requires us to
infer solutions for unknown refinements. We extend our language with holes ★which represent
unknown refinements in the surface language. The type-checker internally replaces holes with
template variables of the form {v:̂ (x̄)}, where ^ represents the unknown refinement. We extend
the environment syntax with bindings for type-variables. Finally, our typing judgements now
make use of a template instantiation environment Σ, and label-set 𝜎 . The template instantiation
environment tracks must-instantiations. Labels track the origin of instantiations to ensure that
instantiations are not created out of thin air. We now describe how to modify our previous rules to
account for these new features.

4.1 Holes, Templates, and Polymorphism

Template variables are not explicitly written by the programmer. Instead, the type system creates
one for every hole ★ that is present in the expression. Following [Jhala and Vazou 2021], we define
a judgement of the form Γ ⊢ s ▷ t which states that we can instantiate the holes in s with templates,
such that t will be the resulting type. The rules are shown in Figure 7. Rule [Ins-Hole] allows us to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:16 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

create a fresh template variable ^ in place of a hole. The arguments x̄ of the template variable range
over both variable v bound to the current value, as well as all variables in environment Γ. Concrete
refinements do not have to be instantiated and are thus left unchanged via rule [Ins-Conc]. Lastly,
functions are instantiated by rule [Ins-Fun]. Since refinement types permit us to write dependent
function types, we extend the environment of the output type with the type of its argument.

Annotations Since annotations can now contain holes, we have to adjust the annotation rule to
instantiate templates for them. This is done via the grayed-out instantiation term in [Fail-Ann]
shown in Figure 5. The term creates templates for any holes that reside in the annotation.
Next, we need to define rules for polymorphism. This amounts to defining rules for type application
and type abstraction. We show the rules in Figure 7. Rule [Ref-TLam] for type abstractions follows
the rule for regular lambdas, however, it allows us to extend the environment with a type instead
of a term. Additionally, it introduces a well-formedness constraint, which shows that the type is
closed under the environment and all refinements are Bool-typed. Rule [Fail-TApp] allows us to
discard the type argument, if a synthesis failure occurred in a type application. This is in line with
application on terms, where we can discard the argument.

4.2 Must-Instantiations

In order to track must-instantiations, we make use of the template instantiation environment Σ.

UsingMust-Instantiations Consider again rule [Non-Sub-Base] from Figure 4. To show that must-
instantiations are sound, we attach a label environment 𝜎 to all rules. A label ℓ is added whenever
the must-instantiations that correspond to this label are checked. These labels are propagated from
every subtyping constraint towards the final refutation. In rule [Non-Sub-Base], we check whether
every instantiation in Σ indeed has a sound origin ℓ . This ensures that no must-instantiations can
be created out of thin air. The template instantiation environment Σ is global, and passed to every
rule.

Justifying Must-Instantiations Figure 8 shows our rules for subtyping. We assume that each
subtyping constraint is marked with a unique label. For each subtyping constraint where a tem-
plate variable occurs on the right-hand side, rule [Sub-KVar] checks whether all instances in Σ
marked with its label can indeed be derived. We start by using judgement Γ ⊢ s ≺: t · · · c to create a
constrained Horn clause c that encodes the subtyping constraint. Next, [Sub-KVar] uses clause c to
check that every instance (^ (x̄) ↦→ℓ ŷ) in the must-instantiation set Σ labeled with the current sub-
typing constraint can indeed be derived. This check is performed using the judgement Σ, ∅ ⊢ c ⇓ ŷ,
which computes all valid assignments ŷ for ^ under c and Σ. We will describe this judgement in
more detail later. Here, ŷ is a concrete instance, where every variable in x̄ is mapped to a value.
The rule checks that for every must-instantiation ^ (𝑥) ↦→ℓ 𝑦, instance 𝑦 can indeed be derived.
Note that due to recursion, several instantiations can be derived by the same subtyping constraint.
Finally, the rule adds label ℓ to the 𝜎 to denote that instantiations with this label have a sound
origin.
The rules for judgement Γ ⊢ s ≺: t · · · c follow the normal judgements for checking entailment, as
shown in Figure 4, but extend it to produce a constraint rather than check it. Rule [Sub-Base]
turns a subtyping constraint whose head is a template variable into a Horn clause. Rule [Ent-Ext]
pushes refinement constraints from the environment to the Horn clause, similar to rule [Cex-Ext]
in Figure 4. Finally, rule [Ent-Emp] provides the base-case, which uses the current constraint as the
final Horn clause, once the environment is empty, similar to rule [Cex-Emp] in Figure 4.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:17

Γ ⊢ b{v:p} ≺: b{v : ^ (v̄)} · · · c (^ (x̄) ↦→ℓ ŷ) ∈ Σ ⇒ (Σ, ∅ ⊢ c ⇓ ŷ)
Sub-KVarΣ, ℓ, Γ ⊢ b{v:p} ≺: b{v : ^ (v̄)}

Ent-Emp∅ ⊢ c · · · c
Γ ⊢ ∀x:b.p ⇒ c1 · · · c Ent-ExtΓ; x:b{x:p} ⊢ c1 · · · c

Γ ⊢ ∀v1:b.p1 ⇒ p2 [v2 ≔ v1] · · · c Sub-BaseΓ ⊢ b{v1:p1} ≺: b{v2: p2} · · · c

Fig. 8. Rules for Subtyping.

Propagating Labels We use the synthesis rules of the original type-system from [Jhala and Vazou
2021] like in Section 3. As our typing judgements contain the template instantiation environment
Σ and labels set 𝜎 , we extend the original rules to propagate these environments. The extension
of the original rules is straightforward, and requires conjoining different 𝜎’s whenever two goal
derivations are required. We give the full rules for synthesis in the supplementary material.

Evaluation Figure 9 contains the set of evaluation ruleswithwhichwe can checkmust-instantiations
for a template variable. The rules keep track of a variable mapping 𝛿 , which contains mappings
from variables to concrete values. This mapping is populated whenever we bring a new variable
into scope via rule [Evl-Forall]. Any concrete value w may be chosen here as long as it allows
one to prove the constraints in subsequent rules. We can eliminate implications with and without
templates via rules [Evl-Body] and [Evl-Assume] respectively. The former requires that the mapping
𝛿 is consistent with an instantiation in Σ. The latter that the mapping is a model for the predicate.
When all implications have been resolved, the final rule [Evl-Head] allows us to extract an instanti-
ation for the template variable.

Σ, 𝛿 [x ≔ w] ⊢ c ⇓ v̂
Evl-ForallΣ, 𝛿 ⊢ ∀x.c ⇓ v̂

Σ, 𝛿 ⊢ c ⇓ v̂ 𝛿 |= p
Evl-AssumeΣ, 𝛿 ⊢ p ⇒ c ⇓ v̂

Σ, 𝛿 ⊢ c ⇓ v̂ (^ (x̄) ↦→ℓ 𝛿 (ȳ)) ∈ Σ
Evl-Body

Σ, 𝛿 ⊢ ^ (ȳ) ⇒ c ⇓ v̂
Evl-HeadΣ, 𝛿 ⊢ ^ (x̄) ⇓ 𝛿 (x̄)

Fig. 9. Rules for Evaluation of Horn Clauses.

Instantiation Finally, we can use instances in Σ for our refutation, that is, we usemust-instantiations
to refute a subtyping constraint on a template variable. Rule [Cex-KVar-Ins] in Figure 4 allows us
to substitute a template for its must-instantiation in Σ, and thereby use it in the refutation.

4.3 Example

We will now highlight parts of the derivation of ex3, specifically of the subtyping constraints that
allow us to build a refutation. The global template instantiation environment is Σ � ^ (v) ↦→ℓ1 v = 1.
Figure 10 starts at the subtyping constraint which we want to use for an instantiation on ^. First,
we create the Horn clause that is generated from the constraint. We can use the evaluation rules to
find that the instantiation ^ (v) ↦→ℓ1 v = 1 is indeed valid under this Horn clause. Figure 11 contains
the final refutation. From its label environment, we know that all template instantiations with label
ℓ1 are soundly derived. We check whether all rules in Σ are soundly derived, which is true as it

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:18 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

only contains ℓ1. From here, we continue by checking the constraint. We can expand the template
variable inside of the constraint using the template in Σ. An SMT solver finds a counterexample to
this constraint, which finishes the refutation.

...
Γ ⊢ Int{v:v = 1} ≺: Int{v:̂ (v)} · · · ∀v:Int. v = 1 ⇒ ^ (v)

Σ, v ↦→ 1 ⊢ ^ (v) ⇓ 1 v ↦→ 1 ⊨ v = 1
Evl-AssumeΣ, v ↦→ 1 ⊢ v = 1 ⇒ ^ (v) ⇓ 1

Evl-ForallΣ, ∅ ⊢ ∀v:Int. v = 1 ⇒ ^ (v) ⇓ 1
Sub-KVarΣ, ℓ1, Γ ⊢ Int{v:v = 1} ≺: Int{v:̂ (v)}

Fig. 10. Check of all template instances with label ℓ1.

ℓ1 ∈ ℓ1

SmtCex(∀v:Int. v = 1 ⇒ mod v 2 = 0) Cex-Emp
Σ, ∅ ⊢ ∀v:Int. v = 1 ⇒ mod v 2 = 0

Cex-KVar-InsΣ, ∅ ⊢ ∀v:Int. ^ (v) ⇒ mod v 2 = 0
Non-Sub-BaseΣ, ℓ1, ∅ ⊢ Int{v:̂ (v)} ⊀: Even

Fig. 11. Refutation using Σ.

5 Implementation

To find refinement refutations, we have to find a suitable set of must-instantiations that satisfy
the constraints in Section 4.2. We have implemented the search for must-instantiations in a tool
called HayStack that builds on the LiqidHaskell theorem prover. HayStack is implemented
in around 1500 lines of Haskell code. We keep the size of our implementation low by reusing
LiqidHaskell’s code wherever possible. For example, subtyping constraints are identical for both
refinement types and refutations, which allows reuse of LiqidHaskell’s code for transforming
program expressions to constraints.

Search Strategy At high-level, our search uses the following strategy. First, HayStack translates
the subtyping constraints created by LiqidHaskell into a non-deterministic program, following
[Jhala et al. 2011], and then symbolically executes the program. Here, assertions in the program
encode the restrictions imposed by the subtyping constraints. Whenever we find a path that violates
an assertion, we can use the SMT solver to produce a concrete model. This yields a set of concrete
instances for each unknown refinement, which refute the subtyping constraints, and which we can
therefore use as must-instantiations to populate Σ.

Example Consider again example ex3 in Section 2.4. Type-checking produces the following
subtyping constraints.

Γ ⊢ Int{v:v == 1} ≺: Int{v:^(v)} (ℓ1)
Γ ⊢ Even ≺: Int{v:^(v)} (ℓ2)
Γ ⊢ Int{v:^(v)} ≺: Even (ℓ3)

HayStack transforms these constraints into the program shown in Figure 12. Constraint ℓ3 gets
translated into the function’s main routine. The program creates a fresh variable self for the bound
value of the refinement v, and transforms the unknown refinement ^ into a function call to function
k. This function call explores possible values of ^, as described by the other subtyping constraints.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:19

fn main() {
let self: int;
call $k(self);
assert self mod 2 = 0;

}

fn $k(self: int) {
assume self = 1;

||
assume self mod 2 = 0;

}

Fig. 12. Program transformation for constraints of ex3.

Upon return, the program checks that the value of self is indeed even. The definition of function
k offers two possible execution paths, derived from constraint ℓ1 and ℓ2, respectively. We use || to
denote non-deterministic choice. The first path sets self to 1, according to constraints ℓ1, and the
second path sets self to an even number, following constraint ℓ2.

Program TransformationMore generally, any subtyping constraint whose right-hand side is a
template variable is expanded as a possible body for the corresponding function. The remaining
constraints — those without a template variable on the right-hand side — are added to the main
function, which contains all bodies that could produce a violation. As such, every constraint pro-
duces a single function body. This makes it easy to track labels, i.e., which constraint produced
which must-instantiation. The translation of a constraint into a function body starts with a dec-
laration of the entire environment. self is the variable whose subtyping relation is checked and
it is thus always contained by a function body. After having declared all variables, the function
assumes the refinements placed on each variable. Template variables form a special case, as they
are converted into a call instead. Any constraint in the main function will additionally assert its
required refinement, i.e., the final constraint placed on self.

Search Once the program is generated, HayStack symbolically executes it. Execution starts with
the bodies of the main function and recursively follows function calls, while enumerating different
paths. HayStack only executes the bodies of subtyping constraints which were violated in the
original type-checking attempt by LiqidHaskell. Exploration stops once a satisfying assignment
(a counterexample) has been found. We use depth-first search, which allows us to benefit from
the SMT solver’s incremental solving capabilities to maintain solver state for execution paths that
share a common prefix. Since subtyping constraints may produce recursive programs, we bound
the number of times each recursive function call may be unfolded via a parameter d. If the search
succeeds within the bound, we can conclude that a refutation exists. If the search fails, it could
either be the case that a refutation could be found with a larger bound, or that in fact no refutation
exists, as a different solution for the unknown refinements would complete the proof. In this case,
we substitute the recursive instance with the original solution for the unknown refinement, as
computed by LiqidHaskell to receive a partial counterexample. We clearly mark those cases, so a
user can distinguish them from a full refutation. While partial counterexamples do not yield a full
refutation to the typing derivation, we found that they can often still be useful in determining the
root cause of the verification failure. To speed up the search, we apply an optimization that lets
us avoid exploring paths, if the (negation of the) top-level assertion we want to check is already
unsatisfiable. In this case, further exploration would only add additional assumptions which would
constrain the search even more, and therefore, we can soundly avoid exploring the path further.

Correctness A counterexample found by the search allows us to derive a must-instantiation set Σ
using the rules in Figure 9. The concrete instances of local variables and arguments of function
calls found during symbolic execution determine the non-deterministic choices in rule [Evl-Forall].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:20 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

Fig. 13. Average runtime and success rate of HayStack and G2.

Avg. Runtime Accuracy

Benchmark Avg. LOC # Files HayStack G2 HayStack G2
Full Partial Total

k-means 204 295 51.34 s 386.97 s 63.52 % 35.48 % 99.00 % 98.5 %
list 228 582 1.85 s 80.7 s 98.50 % 1.47 % 99.97 % 97.7 %
map-reduce 83 172 1.28 s 26.12 s 100 % 0 % 100 % 96.6 %
lh-regression 31 191 3.25 s N/A 96.60 % 2.64 % 99.25 % N/A

Notably, these choices are guaranteed to satisfy the soundness checks for assumptions [Evl-Assume],
template variables [Evl-Body] due to the constraints along the symbolic path. The main function
contains the constraint we want to refute. This ensures that we can use the instances we derived
during symbolic exection in rule [Cex-KVar-Ins] to construct a refutation.

Example Symbolically executing the program in Figure 12 produces two paths — one for each
function body of k. The path corresponding to the upper function body violates the assertion
in main, and we query the SMT solver for a counterexample model, which yields self= 1. This
yields the must-instantiation needed to refute the typing judgement. In particular, we can use the
must-instantiation to guide the instantiation choice in rule [Evl-Forall] in Figure 9.

Counterexample Object Once a satisfying assignment has been found, HayStack extracts it into
a JSON object. The object keeps track of must-instantiations, concrete instances for environment
variables, as well as source locations and code-spans for all objects. This information is enough
to reconstruct a full type refutation. Must-instantiations form a valid environment Σ that lets us
discharge rules [Non-Sub-Base] from Figure 4 and [Sub-KVar] in Figure 8. Concrete instances for
environment variables let us discharge rule [Cex-Emp] in Figure 4. Source spans tell us which
subterms contributed to a derivation. Once the object is compiled, we pass it to our interactive
exploration tool Explorer.

Explorer To make it easier to navigate the counterexample, we have implemented a front-end
tool called Explorer. Explorer is implemented in about 600 lines of Rust and provides a visual
interface into the object. It lets the user interactively explore the type refutation by unfolding
instantiations for unknown template variables, as described in Figure 2.

Usage HayStack forms an extension to LiqidHaskell which is enabled via its feature flag
--counter-examples. With this, HayStack automatically searches for a refutation whenever
LiqidHaskell cannot verify a constraint, emitting a concrete counterexample JSON object, if
successful. Explorer is a stand-alone program that can be used to view the emitted JSON file(s).

6 Evaluation

Benchmarks We evaluate our implementation against two datasets. First, the dataset of lazy
counterfactual symbolic execution [Hallahan et al. 2019], against which their implementation G2
was tested. Second, the regression test suite of LiqidHaskell, which contains a wider variety of
refinements that G2 is not compatible with. In their paper, G2 measured runtime of their system
against a set of programs written by students as part of a homework assignment. Their assignment
was to verify a number of functions using LiqidHaskell, which were spread over 3 programs. The
final corpus contains a log of every failed verification attempt. In total, this is a set of 1240 incorrect
programs. We additionally measure our implementation against the LiqidHaskell regression set.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:21

This test suite is a set of 191 incorrect programs, which range over a more diverse set of refinement
type constructs compared to the G2 benchmark. It encompasses several simple checks, such as
out-of-bounds accesses on vectors, uniqueness of elements in collections and refinements over
elements inside of collections. The regression test-suite also contains refinements that are not
handled by G2, for example, abstract refinements, bounded refinements, and refinement reflections.
We use d = 2 for all our experiments.

Fig. 14. Runtime per file of HayStack.

Results Figure 13 compares the runtime and
accuracy of HayStack against those of G2.
HayStack’s runtime includes LiqidHaskell’s
type checking andHayStack’s search for a type
refutation. The results show that HayStack
finds counterexamples for 99.7% of all bench-
marks, and does so an order of magnitude faster
than G2. We believe that this can be attributed
to the difference in approach. G2’s notion of
counterexamples is based on traces, which re-
quires enumerating program runs via symbolic
execution. By contrast, HayStack directly re-
futes the typing derivation, and can therefore
benefit from the abstractions and modularity
the type-system imposes. In Figure 14, we present a detailed overview of the distribution of run-
times for each file. Here, we find a bimodal distribution between runs. Most runs are fast, however
some runs — in particular for our most complicated benchmark k-means — are slow. As a fast
feedback loop is important when fixing verification errors, HayStack users can often benefit from
the improved speed: most counterexamples are found within timeframes similar to those required
to do regular verification with refinement times. This radically improves practicality of verification
with user feedback. In the cases where search times are not quick, HayStack still outperforms G2.
We believe that these numbers could be further improved with better search heuristics.
HayStack’s accuracy is higher than that of G2; It produces counterexamples for 99.7% of the
benchmarks in G2’s suite, 10% of which are partial. HayStack can also find counterexamples for
benchmarks with advanced features like abstract refinements, bounded refinements, and refinement
reflections, which are outside of G2’s scope.

Counterexample QualityManual inspection shows that HayStack’s counterexamples provide
useful insights into the errors found in the benchmark. For example, the list benchmark contains
an assertion checking whether concatenating a list of lists produces a list whose length is the sum
of those of its inputs. Here, HayStack generates a counterexample with an emtpy output list and
non-empty inputs. This gives us a valuable clue: the function is missing a specification that relates
the lengths of its inputs to that of its output. Partial counterexamples also prove useful. A violation
that took particularly long to find in the k-means benchmark is in fact a simple division by zero.
The problem: division is called via a long chain of unannotated functions. Though large, the final
counterexample is easy to understand. If we expand self until it reaches a concrete instance for
the argument, we find the root cause to be an integer that was unconstrained by a refinement and
that HayStack could thus instantiate with 0.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:22 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

6.1 Case Study

We present a case study that shows how HayStack and Explorer help debug verfication failures.

6.2 Expression Evaluator

Our case-study is a simple expression evaluator. An expression is recursively defined as a number,
a variable, an addition, or a let definition. Instead of giving names to variables, we identify them by
a natural number. In particular, variable 0 is the most recently let bound variable; variable 1 the
one bound before that, and so on. This construction is similar to de Bruijn indices. We parametrize
the data-structure by a type-variable a, which represents the type of values our expressions can
take. The following definition captures this description.

data Expr a
= ENum a

| EVar Nat
| EAdd (Expr a) (Expr a)
| ELet (Expr a) (Expr a)

Next, we define an evaluator for these expressions. Our evaluator maintains an environment in the
form of a list of values, which can be indexed by the identifier of an EVar. We use function lookup
to map variables to their value. The type of lookup ensures that the given identifier is indeed a
valid index into the list.

lookup :: x:Nat -> [a]{v:x < len v} -> a

With this, we can define the evaluator. Helper function go recursively traverses the expression. The
evaluation of an expression starts with an empty environment.

eval :: Num a => Expr a -> a
eval = go []
where
go _ (ENum i) = i
go env (EVar x) = lookup x env
go env (EAdd e1 e2) = eval env e1 + eval env e2
go env (ELet e1 e2) = eval (eval env e1:env) e2

Unfortunately, our definition of eval is incorrect as it can produce out of bounds accesses to the
environment. An expression can only be evaluated if it is closed, that is, if all variables are bound
by a let expression.
HayStack locates the problem to lookup, specifically, it pinpoints the input env as violating its
contract. We can then use Explorer to help us identify concrete instances for this violation.
Figure 15 shows two screenshots of the counterexample for eval, as produced by Explorer. The left
screenshot in Figure 15a shows the top-level counterexample screen, which tells us that the empty
list [] is not a list whose length is strictly larger than x. In the bottom of the screen, Explorer
displays the current environment, which tells us that x is instantiated with 0. Explorer also tells
us which constraints were placed on x, here that x is a natural number. By clicking on env, we can
get to the screen shown in Figure 15b. This screen displays an expansion of the template variable
on env, which shows us the origin of must-instantiation []. Using the counterexample, it becomes
clear that eval should only accept closed expressions, which we can specify via a refinement.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

Refinement Type Refutations 305:23

(a) The root violation. (b) Unfolding of must-instantiation.

Fig. 15. A counterexample of eval as displayed by Explorer.

7 Related Work

Counterfactual Symbolic Execution Closest to our work is [Hallahan et al. 2019], which shares
the goal of providing counterexamples for programs with refinement types. In addition to coun-
terexamples due to errors in the code, [Hallahan et al. 2019] defines a notion of counterfactual
evaluation, which allows them to give counterexamples for verification failures that stem from im-
precise specifications, like ex1 from Section 2. In contrast to our work, counterexamples are defined
in a non-compositional fashion, in terms of program traces, rather than compositionally, in terms
of the type-derivation itself. This has several implications. First, finding counterexamples requires
modeling the source semantics of the original language which, for Haskell, is non-trivial due to
lazy evaluation. By contrast, refinement type refutations are directly expressed over the subtyping
constraints and are thus, source language agnostic. Second, modeling counterexamples in terms of
program traces requires explicit enumeration of program runs via symbolic execution, which can
be slow. By contrast, HayStack directly refutes the type derivation, and can therefore benefit from
the abstraction the type system naturally offers. This advantage can be seen in our experimental
evaluation, where HayStack outperforms [Hallahan et al. 2019] by an order of magnitude.

Counterexamples for Deductive Program Verifiers Deductive verifiers often offer little support
to users when verification goes wrong. F* [Swamy et al. 2011] and Low* [Protzenko et al. 2017]
generate counterexamples from SMT queries, but since these queries often involve quantified
formulas, the resulting counterexamples are hard to interpret. It’s also often not clear how to
map counterexamples which represent concrete valuations that refute SMT queries stemming
from verification conditions back to the original typing judgements. By contrast, refinement
type refutations are not expressed in terms of verification conditions and directly refute the
type derivation itself. There have recently been efforts to improve Dafny’s [Leino 2010] support
for counterexamples. [Christakis et al. 2016] presents an IDE that helps debug Dafny errors by
finding counterexamples via symbolic execution. More recently, [Chakarov et al. 2022] proposed a
method to remove irrelevant information from counterexamples to make them more user-friendly.
However, Dafny is only concerned with imperative programs. Push-button verifiers [Birgmeier

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

305:24 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

et al. 2014; Clarke et al. 1999; Henzinger et al. 2002] often produce counterexamples, however,
these counterexamples are non-modular, often large and represent entire execution traces over
the full program state. Moreover, these tools are hard to apply in a functional setting. By contrast,
HayStack produces small counterexamples as it benefits from the abstraction and modularity that
is naturally introduced by the refinement type system. As future work, we plan to explore how
refinement-type refutations can help find counterexamples in languages like F* and Low*.

Randomized Testing Quickcheck [Claessen and Hughes 2000] and SmallCheck [Runciman et al.
2008] use randomized testing to find violations to user-provided properties. [Seidel et al. 2015] uses
bounded, exhaustive testing to validate specification extracted from refinement-type annotations.
Similarly, QuickChick [qui 2018] uses randomized testing to debug Coq proofs. [Zhou et al. 2023]
presents a type-system that ensures completeness of checking by making sure the random test
generators can generate all elements that satisfy a function’s input type. While these techniques
can help pinpoint assertion violations, they cannot debug verification failures that result from
imprecise specifications, such as ex1.

Localizing Errors in Hindley-Milner Style Type Systems [Seidel et al. 2016] uses symbolic
execution to find concrete witnesses that explain and visualize typing failures to programming
novices, however, the work focuses on Hindley-Milner style type systems, rather than refinement
types. Rite [Sakkas et al. 2020] uses a data-driven method to predict possible repairs for type-errors
to help novice-users debug them. Unlike HayStack, these techniques are concerned with the base
type-system, whereas we focus on violations of subtyping constraints between refinements.

Incorrectness Logic Incorrectness logic [Le et al. 2022; O’Hearn 2019; Raad et al. 2022], is dual to
Hoare logic in that it allows reasoning about program failures by tracking under-approximations
of reachable state. This is similar to our notion of must-instantiations, which can also be seen as
underapproximate solutions to the underlying subtyping constraints.

Acknowledgments

This project was partially funded by the Horizon Europe ERC Starting Grant (ERC, SecuStack,
101115046) and the NSF grants CNS-2120642, CNS-2155235, CCF-1918573, CCF-1911213 and CNS-
2327336.

References

2018. QuickChick: Property-Based Testing In Coq. Leonidas Lampropoulos and Benjamin C. Pierce.
Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth

Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.
2019. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article 71 (jan 2019),
31 pages. https://doi.org/10.1145/3290384

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. 2011. Refinement types for secure implementations.
ACM TOPLAS (2011).

Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. 2014. Counterexample to Induction-Guided Abstraction-
Refinement (CTIGAR). In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559),
Armin Biere and Roderick Bloem (Eds.). Springer, 831–848. https://doi.org/10.1007/978-3-319-08867-9_55

Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamaric, and Neha Rungta. 2022. Better counterexamples for Dafny.
In TACAS 2022. https://www.amazon.science/publications/better-counterexamples-for-dafny

Maria Christakis, K. Rustan Leino, Peter Müller, and Valentin Wüstholz. 2016. Integrated Environment for Diagnosing
Verification Errors. In Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-319-08867-9_55
https://www.amazon.science/publications/better-counterexamples-for-dafny

Refinement Type Refutations 305:25

Analysis of Systems - Volume 9636. Springer-Verlag, Berlin, Heidelberg, 424–441. https://doi.org/10.1007/978-3-662-
49674-9_25

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for
Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

Edmund M Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model checking. MIT Press, London, Cambridge.
R. L. Constable and S. F. Smith. 1987. Partial Objects In Constructive Type Theory. In LICS.
Benjamin Cosman and Ranjit Jhala. 2017. Local Refinement Typing. Proc. ACM Program. Lang. 1, ICFP, Article 26 (aug 2017),

27 pages. https://doi.org/10.1145/3110270
J. Dunfield. 2007. Refined typechecking with Stardust. In PLPV.
Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. Comput. Surveys 54, 5 (may 2021), 1–38. https:

//doi.org/10.1145/3450952
C. Fournet, M. Kohlweiss, and P-Y. Strub. 2011. Modular code-based cryptographic verification. In CCS.
Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and Alcides Fonseca. 2023. Usability-Oriented Design of

Liquid Types for Java. In 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 1520–1532. https://doi.org/10.1109/ICSE48619.2023.00132

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing Software Veri-
fiers from Proof Rules. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 405–416.
https://doi.org/10.1145/2254064.2254112

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. 2019. Lazy Counterfactual Symbolic
Execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 411–424. https://doi.org/
10.1145/3314221.3314618

Jad Hamza, Nicolas Voirol, and Viktor Kuncak. 2019. System FR: formalized foundations for the stainless verifier. Proc. ACM
Program. Lang. 3, OOPSLA (2019), 166:1–166:30. https://doi.org/10.1145/3360592

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2002. Lazy Abstraction. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon) (POPL ’02). Association
for Computing Machinery, New York, NY, USA, 58–70. https://doi.org/10.1145/503272.503279

Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. 2011. HMC: Verifying Functional Programs Using Abstract
Interpreters. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer,
470–485. https://doi.org/10.1007/978-3-642-22110-1_38

Ranjit Jhala and Niki Vazou. 2021. Refinement Types: A Tutorial. Foundations and Trends® in Programming Languages 6,
3–4 (2021), 159–317. https://doi.org/10.1561/2500000032

M. Kawaguchi, P. Rondon, and R. Jhala. 2009. Type-based Data Structure Verification. In PLDI.
Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and Emina Torlak. 2017. Refinement Types for Ruby.

CoRR abs/1711.09281 (2017). arXiv:1711.09281 http://arxiv.org/abs/1711.09281
A. M. Kent, D. Kempe, and S. Tobin-Hochstadt. 2016. Occurrence typing modulo theories. In PLDI.
J.C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19(7) (1976), 385–394.
Tristan Knoth, Di Wang, Adam Reynolds, Jan Hoffmann, and Nadia Polikarpova. 2020. Liquid resource types. Proc. ACM

Program. Lang. 4, ICFP (2020), 106:1–106:29. https://doi.org/10.1145/3408988
Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding Real Bugs

in Big Programs with Incorrectness Logic. Proc. ACM Program. Lang. 6, OOPSLA1, Article 81 (apr 2022), 27 pages.
https://doi.org/10.1145/3527325

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liquid Types for Rust. Proc. ACM Program. Lang. 7,
PLDI, Article 169 (jun 2023), 25 pages. https://doi.org/10.1145/3591283

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ranjit Jhala. 2021.
STORM: Refinement Types for Secure Web Applications. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 441–459. https://www.usenix.org/conference/osdi21/presentation/
lehmann

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Proceedings of the 16th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10).
Springer-Verlag, Berlin, Heidelberg, 348–370.

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (dec 2019), 32 pages. https:
//doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

https://doi.org/10.1007/978-3-662-49674-9_25
https://doi.org/10.1007/978-3-662-49674-9_25
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3110270
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1109/ICSE48619.2023.00132
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3360592
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1561/2500000032
https://arxiv.org/abs/1711.09281
http://arxiv.org/abs/1711.09281
https://doi.org/10.1145/3408988
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3591283
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078

305:26 Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (jan 2000), 1–44.
https://doi.org/10.1145/345099.345100

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-
Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified Low-Level Programming Embedded in F*. Proc. ACM Program. Lang. 1, ICFP, Article 17 (aug 2017), 29 pages.
https://doi.org/10.1145/3110261

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent incorrectness separation logic. Proc.
ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498695

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and Lazy Smallcheck: Automatic Exhaustive
Testing for Small Values. In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Victoria, BC, Canada) (Haskell
’08). Association for Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/1411286.1411292

J. Rushby, S. Owre, and N. Shankar. 1998. Subtypes for specifications: predicate subtyping in PVS. IEEE Transactions on
Software Engineering 24, 9 (1998), 709–720. https://doi.org/10.1109/32.713327

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala. 2020. Type Error Feedback
via Analytic Program Repair. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 16–30.
https://doi.org/10.1145/3385412.3386005

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic Witnesses for Static Type Errors (or, Ill-Typed Programs
Usually Go Wrong). In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara,
Japan) (ICFP 2016). Association for Computing Machinery, New York, NY, USA, 228–242. https://doi.org/10.1145/2951913.
2951915

Eric L. Seidel, Niki Vazou, and Ranjit Jhala. 2015. Type Targeted Testing. In Proceedings of the 24th European Symposium
on Programming on Programming Languages and Systems - Volume 9032. Springer-Verlag, Berlin, Heidelberg, 812–836.
https://doi.org/10.1007/978-3-662-46669-8_33

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure
Distributed Programming with Value-Dependent Types. In Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New York, NY, USA,
266–278. https://doi.org/10.1145/2034773.2034811

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell. In
Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). Association for Computing Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

P. Vekris, B. Cosman, and R. Jhala. 2016. Refinement types for TypeScript. In PLDI.
Zhe Zhou, Ashish Mishra, Benjamin Delaware, and Suresh Jagannathan. 2023. Covering All the Bases: Type-Based

Verification of Test Input Generators. Proc. ACM Program. Lang. 7, PLDI, Article 157 (jun 2023), 24 pages. https:
//doi.org/10.1145/3591271

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 305. Publication date: October 2024.

https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3498695
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1109/32.713327
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1007/978-3-662-46669-8_33
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3591271
https://doi.org/10.1145/3591271

	Abstract
	1 Introduction
	2 Overview
	2.1 Using HayStack and Explorer
	2.2 Refinement Type Checking
	2.3 Type Checking Refutations
	2.4 Type Inference Refutations

	3 Type Checking Refutations
	3.1 Non-Subtyping and Non-Entailment
	3.2 Checking and Synthesis Failures
	3.3 Example Derivation
	3.4 Soundness and Completeness

	4 Type Inference Refutations
	4.1 Holes, Templates, and Polymorphism
	4.2 Must-Instantiations
	4.3 Example

	5 Implementation
	6 Evaluation
	6.1 Case Study
	6.2 Expression Evaluator

	7 Related Work
	Acknowledgments
	References

