
IODINE: Verifying Constant-Time Execution of Hardware

Klaus v. Gleissenthall
University of California, San Diego

Rami Gökhan Kıcı
University of California, San Diego

Deian Stefan
University of California, San Diego

Ranjit Jhala
University of California, San Diego

Abstract. To be secure, cryptographic algorithms cru-
cially rely on the underlying hardware to avoid inad-
vertent leakage of secrets through timing side channels.
Unfortunately, such timing channels are ubiquitous in
modern hardware, due to its labyrinthine fast-paths and
optimizations. A promising way to avoid timing vulnera-
bilities is to devise – and verify – conditions under which
a hardware design is free of timing variability, i.e., exe-
cutes in constant-time. In this paper, we present IODINE:
a clock-precise, constant-time approach to eliminating
timing side channels in hardware. IODINE succeeds in
verifying various open source hardware designs in sec-
onds and with little developer effort. IODINE also discov-
ered two constant-time violations: one in a floating-point
unit and another one in an RSA encryption module.

1 Introduction
Trust in software systems is always rooted in the underly-
ing hardware. This trust is apparent when using hardware
security features like enclaves (e.g., SGX and TrustZone),
crypto units (e.g., AES-NI and the TPM), or MMUs. But
our trust goes deeper. Even for simple ADD or MUL instruc-
tions, we expect the processor to avoid leaking any of
the operands via timing side channels, e.g., by varying
the execution time of the operation according to the data.
Indeed, even algorithms specifically designed to be re-
silient to such timing side-channel attacks crucially rely
on these assumptions [23–25]. Alas, recently discovered
vulnerabilities have shown that the labyrinthine fast-paths
and optimizations ubiquitous in modern hardware expose
a plethora of side channels that undermine many of our
deeply held beliefs [33, 35, 41].

A promising way to ensure that trust in hardware is
properly earned is to formally specify our expectations,
and then, to verify – through mathematical proof – that the
units used in security critical contexts do not exhibit any

timing variability, i.e., are constant-time. For instance,
by verifying that certain parts of an arithmetic logic unit
(ALU) are constant-time, we can provide a foundation for
implementing secure crypto algorithms in software [16,
20, 22]. Dually, if timing variability is unavoidable, e.g.,
in SIMD or floating-point units, making this variability
explicit can better inform mechanisms that attempt to
mitigate timing channels at the software level [18, 45,
54] in order to avoid vulnerabilities due to gaps in the
hardware-software contract [17, 18].

In this paper, we introduce IODINE: a clock-precise,
constant-time approach to eliminating timing side chan-
nels in hardware. Given a hardware circuit described
in Verilog, a specification comprising a set of sources
and sinks (e.g., an FPU pipeline start and end) and a set
of usage assumptions (e.g., no division is performed),
IODINE allows developers to automatically synthesize
proofs which ensure that the hardware runs in constant-
time, i.e., under the given usage assumptions, the time
taken to flow from source to sink, is independent of
operands, processor flags and interference by concurrent
computations.

Using IODINE, a crypto hardware designer can be cer-
tain that their encryption core does not leak secret keys or
messages by taking a different number of cycles depend-
ing on the secret values. Similarly, a CPU designer can
guarantee that programs (e.g., cryptographic algorithms,
SVG filters) will run in constant-time when properly
structured (e.g., when they do not branch or access mem-
ory depending on secrets [20]).

IODINE is clock-precise in that it enforces constant-
time execution directly as a semantic property of the cir-
cuit rather than through indirect means like information
flow control [55]. As a result, IODINE neither requires
the constant-time property to hold unconditionally nor

demands the circuit be partitioned between different se-
curity levels (e.g., as in SecVerilog [55]). This makes
IODINE particularly suited for verifying existing hard-
ware designs. For example, we envision IODINE to be
useful in verifying ARM’s recent set of data indepen-
dent timing (DIT) instructions which should execute in
constant-time, if the PSTATE.DIT processor state flag is
set [2, 40].

While there have been significant strides in verifying
the constant-time execution of software [14–16, 18, 20–
22,53], IODINE unfortunately cannot directly reuse these
efforts. Constant time methods for software focus on
straight-line, sequential—often cryptographic—code.

Hardware designs, however, are inherently concurrent
and long-lived: circuits can be viewed as collections of
processes that run forever, performing parallel compu-
tations that update registers and memory in every clock
cycle. As a result, in hardware, even the definition of
constant-time execution becomes problematic: how can
we measure the timing of a hardware design that never
stops and performs multiple concurrent computations
that mutually influence each other?

In IODINE, we address these challenges through the
following contributions.

1. Definition. First, we define a notion of constant-time
execution for concurrent, long-lived computations. In or-
der to reason about the timing of values flowing between
sources and sinks, we introduce the notion of influence
set. The influence set of a value contains all cycles t,
such that an input (i.e., a source value) at t was used in
its computation. We say that a hardware design is con-
stant time, if all its computation paths (that satisfy usage
assumptions) produce the same sequence of influence
sets for sinks.

2. Verification. To enable its efficient verification, we
show how to reduce the problem of checking constant-
time execution – as defined through influence sets – to
the standard problem of checking assertion validity. For
this, we first eschew the complexity of reasoning about
several concurrent computations at once, by focusing on
a single computation starting (i.e., inputs issued) at some
cycle t. We say that a value is live for cycle t (t-live), if
it was influenced by the computation started at t, i.e., t is
in the value’s influence set. This allows us to reduce the
problem of checking equality of influence sets, to check-
ing the equivalence of membership, for their elements.
We say that a hardware design is liveness equivalent, if,
for any two executions (that satisfy usage assumptions),
and any t, t-live values are assigned to sinks in the same

way, i.e., whenever a t-live value is assigned to a sink in
one execution, a t-live value must also be assigned to a
sink in the other.

To check a hardware design for liveness equivalence,
we mark source data as live in some arbitrarily chosen
start cycle t, and track the flow of t-live values through
the circuit using a simple standard taint tracking moni-
tor [43]; the problem of checking liveness equivalence
then reduces to checking a simple assertion stating that
sinks are always tainted in the same way. Reducing
constant-time execution to the standard problem of check-
ing assertion validity allows us to rely on off-the-shelf,
mature verification technology, which explains IODINE’s
effectiveness.

3. Evaluation. Our final contribution is an implemen-
tation and evaluation of IODINE on seven open source
VERILOG projects—CPU cores, an ALU, crypto-cores,
and floating-point units (FPUs). We find that IODINE

succeeds in verifying different kinds of hardware de-
signs in a matter of seconds, with modest developer ef-
fort (§ 6). Many of our benchmarks are constant-time for
intricate reasons (§ 6.3), e.g., whether or not a circuit is
constant-time depends on its execution history, circuits
are constant-time despite triggering different control flow
paths depending on secrets, and require a carefully cho-
sen set of assumptions to be shown constant-time. In our
experience, these characteristics – combined with the cir-
cuit size – make determining whether a hardware design
is constant-time by code inspection near impossible.

IODINE also revealed two constant-time violations:
one in the division unit of an FPU designs, another in the
modular exponentiation module of an RSA encryption
module. The second violation—a classical timing side
channel—can be abused to leak secret keys [27, 34].

In summary, this paper makes the following contribu-
tions.

I First, we give a definition for constant-time execution
of hardware, based on the notion of influence sets (§ 2).
We formalize the semantics of VERILOG programs
with influence sets (§ 3), and use this formalization to
define constant-time execution with respect to usage
assumptions (§ 4).

I Our second contribution is a reduction of constant-time
execution to the easy-to-verify problem of liveness
equivalence. We formalize this property (§ 4), prove
its equivalence to our original notion of constant-time
execution (§ 4.3), and show how to verify it using
standard methods (§ 5).

2

1 // source(x); source(y); sink(out);

2 // assume(ct = 1);

3

4 reg flp_res , x, y, ct, out , out_ready , ...;

5 wire iszero , isNaN , ...;

6

7 assign iszero = (x == 0) || (y == 0);

8

9 always @(posedge clk) begin

10 ...

11 flp_res <= ... // (2) compute x * y

12 end

13

14 always @(posedge clk) begin

15 if (ct)

16 ...; out <= flp_res; // (4)

17 else

18 if (iszero)

19 out <= 0; // (1)

20 else if (isNaN)

21 ...

22 else out <= flp_res; // (3)

23 end

24 end

25 end

Figure 1: Floating point multiplier (EX1).

I Our final contribution is an implementation and eval-
uation of IODINE on several challenging open source
hardware designs (§ 6). Our evaluation shows that IO-
DINE can be used to verify constant-time execution of
existing hardware designs, rapidly, and with modest
user effort.

2 Overview
In this section, we give an overview of IODINE and show
how our tool can be used to verify that a piece of VER-
ILOG code executes in constant-time. As a running exam-
ple, we consider a simple implementation of a floating-
point multiplication unit.

Floating Point Multiplier. Our running example, like
most FPUs, is generally not constant-time—common
operations (e.g., multiplication by zero) are dramatically
faster than rare ones (e.g., multiplication by denormal
numbers [17,35]). But, like the ARM’s recent support for
data independent timing instructions, our FPU contains a
processor flag that can be set to ensure that all multiplica-
tions are constant-time, at the cost of performance. Fig. 1
gives a simplified fragment of VERILOG code that imple-
ments this FPU multiplier. While our benchmarks consist
of hundreds of threads with shared variables, pipelining,
and contain a myriad of branches and flags which cause
dependencies on the execution history (see § 6.3), we

have kept our running example as simple as possible: our
multiplier takes two floating-point values—input regis-
ters x and y—and stores the computation result in output
register out. Recall that VERILOG programs operate on
two kinds of data-structures: registers which are assigned
in always-blocks and store values across clock cycles
and wires which are assigned in assign-blocks and hold
values only within a cycle. Control register ct is used to
configure the FPU to run in constant-time (or not). For
simplicity, we omit most other control logic (e.g., reset
or output-ready bits and processing of inputs). Internally,
the multiplier consists of several fast paths and a single
slow path. For example, to implement multiplication by
zero, one, NAN, and other special values we, inspect the
input registers for these values and produce a result in a
single cycle (see (1)). Multiplication by other numbers is
more complex, however, and generally takes more than a
single cycle. As shown in Fig. 1, this slow path consists
of multiple intermediate steps, the final result of which is
assigned to a temporary register flp_res (see (2)) before
out (see (3)).1 Importantly, when the constant-time con-
figuration register ct is set, only this slow path is taken
(see (4)).

Outline. In the rest of this section, we show how IODINE

verifies that this hardware design runs in constant-time
when the ct flag is set and violates the constant-time prop-
erty otherwise. We present our definition of constant-time
based on of influence sets in § 2.1, liveness equivalence
in § 2.2, and finally show how IODINE formally verifies
liveness equivalence by reducing it to a simple safety
property that can be handled by standard verification
methods § 2.3.

2.1 Constant-Time For Hardware
We start by defining constant-time execution for hard-
ware.

Assumptions and Attacker Model. Like SecVerilog [55],
we scope our work to synchronous circuits with a single,
fixed-rate clock. We further assume an external attacker
that can measure the execution time of a piece of hard-
ware (given as influence sets) using a cycle-precise timer.
In particular, an attacker can observe the timing of all
inputs that influenced a given output. These assumptions
afford us many benefits. (Though, as we describe in § 7,
they are not for free.) For example, assuming a single

1 For simplicity, we omit the intermediate steps and assume that they
implement floating-point multiplication in constant-time. In practice,
FPUs may also take different amounts of time depending on such
values.

3

P ::= Program
| [s]id process
| P ‖ P parallel composition
| repeat P sync. iteration
| › empty process

s ::= Command
| skip no-op
| v = e blocking
| v⇐ e non-blocking
| v := e continuous
| ite(e,s,s) conditional
| s1 ; . . . ; sk sequence
| a annotation

e ::= Expression
| v variables
| n constants
| f (e1, . . . ,ek) function literal

Figure 2: Syntax for intermediate language VINTER.

repeat [iszero := (x == 0 || y == 0)]
‖ repeat [. . . ; flp_res⇐ . . .]

‖ repeat

ite(ct,

out⇐ flp_res,
ite(iszero,

out⇐ 0,
out⇐ flp_res))

Figure 3: EX1 written in VINTER

fixed-rate clock, allows us to translate VERILOG pro-
grams, such as our FPU multiplier to a more concise
representation shown in Figure 3.

Intermediate Language. In this language—called VIN-
TER—VERILOG always- and assign-blocks are repre-
sented as concurrent processes, wrapped inside an infinite
repeat-loop. As Fig. 2 shows, each process sequentially
executes a series of VERILOG-like statements. (Each pro-
cess also has a unique identifier id ∈ PIDs, which we
sometimes omit, for brevity.) Most of these are standard;
we only note that VINTER– like VERILOG– supports
three types of assignment statements: blocking (v = e),
non-blocking (v⇐ e) and continuous (v := e). Blocking
assignments take effect immediately, within the current
cycle; non-blocking assignments are deferred until the
next cycle. Finally, continuous assignments enforce di-
rected equalities between registers or wires: whenever
the right-hand side of an equality is changed, the left-
hand side is updated by re-running the assignment. Note
that VINTER focuses only on the synthesizable fragment
of VERILOG, i.e., does not model delays, etc., which are
only relevant for simulation.

VINTER processes are composed in parallel using the

(‖) operator. Unlike concurrent software processes, they
are, however, synchronized using a single (implicit) fixed-
rate clock: each process waits for all other (parallel) pro-
cesses to finish executing before moving on to the next
iteration, i.e., next clock cycle. Moreover, unlike soft-
ware, these programs are usually data-race free, in order
to be synthesizable to hardware.

VINTER processes run forever; they perform computa-
tions and update registers (e.g., out in our multiplier) on
every clock cycle. For example, pipelined hardware units
execute multiple, different computations simultaneously.

From Software to Hardware. This execution model, to-
gether with the fact that software operates at a higher
level of abstraction than hardware, makes it difficult for
us to use existing verification tools for constant-time
software (e.g., [16, 20]).

First, constant-time verification for software only con-
siders straight-line, sequential code. This makes it ill-
suited for the concurrent, long-lived execution model of
hardware.

Second, software constant-time models are necessarily
conservative. They deliberately abstract over hardware
details—i.e., they don’t rely on a precise hardware mod-
els (e.g., of caches or branch predictors)—and instead
use leakage models that make control flow and memory
access patterns observable to the attacker. This makes
constant-time software portable across hardware. But,
it also makes the programming model restrictive: the
model disallows any branching to protect against hidden
microarchitectural state (e.g., the branch predictor).

Since we operate on VERILOG, where all state is ex-
plicit and visible, we can instead directly track the influ-
ence of secret values on the timing of attacker-observable
outputs. This allows us to be more permissive than soft-
ware constant-time models. For instance, if we can show
that the execution of two branches of a hardware design
takes the same amount of time, independent of secret
inputs, we can safely allow branches on secrets. How-
ever, this still leaves the problem of pipelining: hardware
ingests inputs and produce outputs at every clock cy-
cle: how then do we know (if and) which secret inputs
influenced a particular output?

Influence Sets. This motivates our definition for influ-
ence sets. In order to define a notion of constant-time
execution that is suitable for hardware, we first add an-
notations marking inputs (i.e., x and y in our example)
as sources and outputs (i.e., out) as sinks. For a given
cycle, we then associate with each register x its influence-
set θ(x). The influence set of a register x contains all

4

Cycle # x y ct fr out θ(x) θ(y) θ(ct) θ(fr) θ(out)
0 0 1 F X X {0} {0} ∅ ∅ ∅
1 0 1 F X 0 {1} {1} ∅ ∅ {0}

...
k-1 0 1 F 0 0 {k−1} {k−1} ∅ {0} {k−2}
k 0 1 F 0 0 {k} {k} ∅ {1} {k−1}

Figure 4: Execution of EX1, where x = 0 and y = 1, and ct is unset. For each variable and cycle, we show its current value and
influence set. We assume that it takes k cycles to compute the output along the slow path, and abbreviate flp_res as fr. X denotes an
unknown/irrelevant value. Register out is only influenced by values from the last cycle. Highlighted cells are the difference with
Figure 5. Values that stayed the same in the next cycle are shaded.

Cycle # x y ct fr out θ(x) θ(y) θ(ct) θ(fr) θ(out)
0 1 1 F X X {0} {0} ∅ ∅ ∅
1 1 1 F X X {1} {1} ∅ ∅ {0}

...
k-1 1 1 F 1 X {k−1} {k−1} ∅ {0} {k−2}
k 1 1 F 1 1 {k} {k} ∅ {1} {0,k−1}

Figure 5: Execution of EX1, where both x = 1 and y = 1, and ct is unset. The execution produces the same influence sets as the
execution in Fig. 4, except for cycle k, where out’s influence set contains the additional value 0, thereby violating our definition of
constant-time execution.

cycles t, such that an input at t was used in the com-
putation of x’s current value. This allows us to define
constant-time execution for hardware: we say that a hard-
ware design is constant-time, if any two executions (that
satisfy usage assumptions) produce the same sequence
of influence sets for their sinks.

Example. We now illustrate this definition using our run-
ning example EX1 by showing that EX1 violates our
definition of constant-time, if the ct flag is unset. For
this, consider Fig. 4 and Fig. 5, which show the state of
registers and wires as well as their respective influence
sets, for two executions. In both executions, we let y = 1,
but vary the value of the x register: in Fig. 4, we set x to
0 to trigger the fast path in Fig. 5 we set it to 1. In both
executions, sources x and y are only influenced by the
current cycle, constant-time flag ct is set independently
of inputs, and temporary register flp_res is influenced by
the inputs that were issued k−1 cycles ago, as it takes
k−1 cycles to compute flp_res along the slow path.

The two executions differ in the influence sets of out.
In Fig. 4, out is only influenced by the input issued in
the last cycle, through a control dependency on iszero. In
the execution in Fig. 5, its value at cycle k is however
also influenced by the input at 0. This reflects the propa-
gation of the computation result through the slow path.
Crucially, it also shows that the multiplier is not constant-
time—the sets θ(out) differing between two runs reflects

the influence of data on the duration of the computation.

2.2 Liveness Equivalence
We now show how to reduce verifying whether a given
hardware is constant-time to an easy-to-check, yet equiv-
alent problem called liveness equivalence. Intuitively,
liveness equivalence reduces the problem of checking
equality of influence sets, to checking the equivalence of
membership, for arbitrary elements.

Liveness Equivalence. Our reduction focuses on a sin-
gle computation started at some cycle t. We say that
register x is live for cycle t (t-live), if its current value is
influenced by an input issued in cycle t, i.e., if t ∈ θ(x).
Two executions are t-liveness equivalent, if whenever a
t-live value is assigned to a sink in one execution, a t-live
value must also be assigned in the other. Finally, a hard-
ware design is liveness equivalent, if any two executions
that satisfy usage assumptions are t-liveness equivalent,
for any t.

Live Value Propagation. To track t-liveness for a fixed t,
IODINE internally transforms VINTER programs as fol-
lows. For each register or wire (e.g., x in our multiplier),
we introduce a new shadow variable (e.g., x•) that rep-
resents its liveness; a shadow variable x• is set to L if x
is live and D (dead) otherwise.2 We then propagate live-

2 For liveness-bits x• and y•, we define a join operator ∨, such that
x•∨ y• is L, if x• or y• is L andD, otherwise.

5

repeat

[
iszero := (x == 0 || y == 0) ;
iszero• := (x•∨ y•)

]
‖ repeat

[
. . . ; flp_res⇐ . . . ;
. . . ; flp_res•⇐ . . . //(x•∨ y•)

]

‖ repeat

ite(ct,
out⇐ flp_res ;
out•⇐ (flp_res•∨ ct•) ,
ite(iszero,out⇐ 0 ;

out•⇐ (ct•∨ iszero•) ,
out⇐ flp_res ;

out•⇐
(

flp_res•∨
ct•∨ iszero•

)
))

Figure 6: EX1, after we propagate liveness using a standard
taint-tracking inline monitor.

x y ct fr out x• y• ct• fr• out•

0 0 1 F X X L L D D D
1 0 1 F X 0 D D D D L

...
k-1 0 1 F 0 0 D D D L D
k 0 1 F 0 0 D D D D D

Figure 7: Execution of EX1•, where x = 0 and y = 1. We
show current value and liveness bit for each register and cycle.
Register out is live in cycle one, due to the fast path and dead,
otherwise. Highlights are the differences with Figure 8. Values
that stayed the same in the next cycle are shaded.

ness using a standard taint-tracking inline monitor [43]
shown in Figure 6. Intuitively, our monitor ensures that
registers and wires that depend on a live value—directly
or indirectly, via control flow—are marked live.

Example. By tracking liveness, we can again see that our
floating-point multiplier is not constant-time when the
ct flag is unset. To this end, we “inject” live values at
sources (x and y) at time t= 0 for two runs; as before, we
set y = 1, and vary the value of x: in one execution, we
set x to 0 to trigger the fast path, in the other execution,
we set it to 1. Fig. 7 and 8 show the state of the different
registers and wires for these runs. In both runs, out is
live at cycle 1—due to a control dependency in Fig. 7,
due a direct assignment in Fig. 8. But, in the latter, out
is also live at the kth cycle. This reflects the fact that the
influence sets of out at cycle k differ in the membership
of 0, and therefore witnesses the constant-time violation.

2.3 Verifying Liveness Equivalence
Using our reduction to liveness equivalence, we can ver-
ify that a VERILOG program executes in constant-time
using standard methods. For this, we mark source data as
live in some arbitrarily chosen start cycle t. We then ver-
ify that any two executions that satisfy usage assumptions

x y ct fr out x• y• ct• fr• out•

0 1 1 F X X L L D D D
1 1 1 F X X D D D D L

...
k-1 1 1 F 1 X D D D L D
k 1 1 F 1 1 D D D D L

Figure 8: Execution of EX1•, where both x = 1 and y = 1. The
liveness bits are the same as in 7, except for cycle k, where out
is now live. This reflects the propagation of the output value
through the slow path and shows the constant-time violation.

repeat

iszeroL := (xL == 0 || yL == 0) ;
iszeroR := (xR == 0 || yR == 0) ;

iszero•L :=
(
x•L∨ y•L

)
;

iszero•R :=
(
x•R∨ y•R

)

‖ repeat

. . . ; flp_resL⇐ . . . ;
. . . ; flp_resR⇐ . . . ;

flp_res•L⇐ . . . //
(
x•L∨ y•L

)
;

flp_res•R⇐ . . . //
(
x•R∨ y•R

)

‖ repeat . . .

Figure 9: Per-process product form of EX1.

assign t-live values to sinks, in the same way.

Product Programs. Like previous work on verifying
constant-time software [16], IODINE reduced the prob-
lem of verifying properties of two executions of some
program P by proving a property about a single execu-
tion of a new program Q. This program – the so-called
product program [22] – consists of two disjoint copies of
the original program.

Race-Freedom. Our product construction exploits the
fact thatVERILOG programs are race-free, i.e., the order
in which always-blocks are scheduled within a cycle does
not matter. While races in software often serve a purpose
(e.g., a task distribution service may allow races between
equivalent worker threads to increase throughput), races
in VERILOG are always artifacts of poorly designed code:
any synthesized circuit is, by its nature, race-free, i.e., the
scheduling of processes within a cycle does not affect
the computation outcome. Indeed, races in VERILOG

represent an under-specification of the intended design.

Per-Process Product. We leverage this insight to com-
pose the two copies of a program in lock-step. Specifi-
cally, we merge each process of the two program copies
and execute the “left” (L) and “right” (R) copies together.
For example, IODINE transforms the VINTER multiplier
code from Figure 6 into the per-process product program
shown in Figure 9.

Merging two copies of a program as such is sound:
since the program is race-free—any ordering of process

6

transitions within a cycle yields the same results—we are
free to pick an arbitrary schedule.3 Hence, IODINE takes
a simple ordering approach and schedules the left and
right copy of same process at the same time.

Constant-Time Assertion. Given such a product pro-
gram, we can now frame the constant-time verification
challenge as a simple assertion: the liveness of the left
and right program sink-variables must be the same (re-
gardless of when the computation started). In our exam-
ple, this assertion is simply out•L = out•R. This asser-
tion can be verified using standard methods. In particular,
IODINE synthesize process-modular invariants [44] that
imply the constant-time assertion (§ 5).

The following two sections formalize the material pre-
sented in this overview.

3 Syntax and Semantics
Since VERILOG’s execution model can be subtle [12], we
formally define syntax and semantics of the VERILOG

fragment considered in this paper.

3.1 Preliminaries
For a function f, we write dom f to denote f’s domain and
ran f for its co-domain. For a set S⊆ dom f, we let f[S←
b] denote the function that behaves the same as f except
S, where it returns b, i.e., f[S← b](x) evaluates to b if
x ∈ S and f(x), otherwise. We use f[a← b] as a short
hand for f[{a}← b]. Sometimes, we want to update a
function by setting the function values of some subset S
of its domain to a non-deterministically chosen value. For
S⊆ dom f, we write f[S←∗](x) to denote the function
that evaluates to some y with y ∈ ran f, if x ∈ S and f(x)
otherwise.

3.2 Syntax
We restrict ourselves to the synthesizable fragment of
VERILOG, i.e., we do not include commands like initial
blocks that only affect simulation and implement a nor-
malization step [31] in which the program is “flattened”
by removing module instantiation through in-lining. We
provide VERILOG syntax and a translation to VINTER in
Appendix A.2, but define semantics in VINTER (Fig. 2).

Annotations. We define annotations in Figure 10. Let
Regs denote the set of registers and Wires the set of
wires and let VARS denote their disjoint union, i.e.,
VARS , Regs]Wires. For a register v ∈ Regs, annota-
tions source(v) and sink(v) designate v as source or sink,

3To ensure that hardware designs are indeed race-free, our imple-
mentation performs a light-weight static analysis to check for races.

a ::= In/Out Assump.
| source(v) source | init(ϕ) initiallyϕ
| sink(v) sink | �(ϕ) alwaysϕ

Figure 10: Annotation syntax.

Config Meaning Trace Meaning

σ store Σ configuration
τ liveness map l label
θ influence map b liveness bit
µ assign. buffer π trace
ev event set store(π,i) σi
P current program live(π,i) τi
I initial program inf (π,i) θi
c clock cycle clk(π,i) ci

reset(π,i) bi

Figure 11: Configuration and trace syntax.

respectively.4 We let IO , (Src,Sink) denote the set of
input/output assumptions, where Src denotes the set of
all sources and Sink denote the set of all sinks. Let ϕ
be a first-order formula over some background theory
that refers to two disjoint sets of variables VarsL and
VARSR. Then, annotations init(ϕ) and�(ϕ) indicate that
formula ϕ holds initially or throughout the execution.
The assumptions are collected in A , (INIT, ALL), such
that INIT contains all formulas under init and ALL all
formulas under �.

3.3 Semantics

Values. The set of values VALS,Z] {X} consists of the
disjoint union of the integers and special value X which
represents an irrelevant value. A function application that
contains X as an argument evaluates to X.

Configurations. The program state is represented
by a configuration Σ ∈ Configs. Figure 11 shows
the components of a configuration. A store σ ∈
STORES , (VARS 7→ VALS) is a map from registers
and wires to values. A liveness map τ ∈ LIVEMAP ,
(VARS 7→ {L,D}) is a map from registers and wires
to liveness bits. A influence map θ ∈ INFMAPS ,
(VARS 7→ P(Z)) is a map from registers and wires
to influence sets. Assignment buffers serve to model
non-blocking assignments. Let PIDs denote a set of
process identifiers. An assignment buffer µ ∈ PIDs 7→
(VARS×VALS× {L,D}×P(Z))∗ is a map from pro-
cess identifier to a sequence of variable/value/liveness-
bit/influence set tuples. An event set ev ∈ P(VARS) is

4To use wires as source/sink, one has to define an auxiliary register.

7

[VAR]

v,σ,τ,θ 99Kσ(v),τ(v),θ(v)

[CONST]

n,σ,τ,θ 99Kn,D,∅

[FUN]
e1,σ,τ,θ 99K v1,t1,i1 . . . ek,σ,τ,θ 99K vk,tk,ik

f (e1, . . . ,ek),σ,τ,θ 99K f (v1, . . . ,vk),(t1 ∨ · · ·∨tk) ,(i1∪···∪ik)

Figure 12: Expression evaluation.

a set of variables, where we use v ∈ ev to indicate that
variable v has been changed in the current cycle. Finally,
I ∈ Progs contains the initial program. Intuitively, the
initial program is used to activate all processes when a
new clock cycle begins.

Evaluating Expressions. We define an evaluation
relation 99K∈ (EXPR × STORES × LIVEMAP ×
INFMAPS) 7→ (VALS× {L,D}× P(Z)) that computes
value, liveness-bit, and influence map for an expression.
We define the relation through the inference rules shown
in Fig. 12. An evaluation step (below the line) can be
taken, if the preconditions (above the line) are met. Rule
[VAR] evaluates a variable to its current value under
the store, its current liveness-bit and influence set. A
numerical constant evaluates to itself, is dead and not
influenced by any cycle. To evaluate a function literal,
we evaluate its arguments and apply the function on the
resulting values. A function value is live if any of its
arguments are, and its influence set is the union of its
influences.

Transition Relations. We define our semantics in
terms of four separate transition relations of type
(Configs×Labels×Configs). We now discuss the indi-
vidual relations and then describe how to combine them
into an overall transition relation .

Per-process transition P. The per-process transition
relation P describes how to step along individual pro-
cesses. It is defined in Fig. 13. Rules [SEQ-STEP] and
[PAR-STEP] are standard and describe sequential and
parallel composition. Rule [B-ASN] reduces a block-
ing update x = e to skip, by first evaluating e to yield
a value v, liveness bit t and influence set i, updating
store σ, liveness map τ and influence map θ, and finally
adding x to the set of modified variables. Rule [NB-ASN]

defers a non-blocking assignment. In order to reduce an
assignment (x⇐ e)id for process id to skip, the rule eval-
uates expression e to value v, liveness bit t and influence
set i, and defers the assignment by appending the tu-
ple (x,v,t, i) to the back of id’s buffer. We omit rules
for conditionals and structural equivalence. Structural

equivalence allows transitions between trivially equiva-
lent programs such as P ‖Q and Q ‖ P.

Non-blocking Transition N. Transition relation N

applies deferred non-blocking assignments. It is defined
by a single rule [NB-APP] shown in Fig. 13. The rule
first picks a tuple (x,v,t, i) from the front of the buffer
of some process id, and, like [B-ASN], updates store σ,
liveness map τ and influence map θ, and finally adds x
to the set of updated variables.

Continuous Transition C. Relation C specifies how
to execute continuous assignments. It is described by
rule [C-ASN] in Fig. 13, which reduces a continuous
assignment x := e to skip under the condition that some
variable y occurring in e has changed, i.e., y ∈ ev. To
apply the assignment, it evaluates e to value, liveness bit
and influence set, and updates store and liveness map and
influence map. Importantly, variable y is not removed
from the set of events, i.e., a single assignment can enable
several continuous assignments.

Global Transition G. Finally, global transition re-
lation G is defined by rules [NEWCYCLE] and
[NEWCYCLE-ISSUE] shown in Fig. 13. [NEWCYCLE]
starts a new clock cycle by discarding the current pro-
gram and event set, emptying the assignment buffer,
resetting the wires to some non-deterministically cho-
sen state (as wires only hold their value within a cy-
cle), and rescheduling and activating a new set of pro-
cesses, extracted from initial program I. For a program P,
let REPEAT(P) ∈ P(Progs) denote the set of processes
that occur under repeat. For a set of programs S, we let
u S denote their parallel composition. [NEWCYCLE]
uses these constructs to reschedule all processes that ap-
pear under repeat in I. Both sources and wires are set
toD. The influence map is updated by mapping all wires
to the empty set, and each source to the set containing
only the current cycle.

[NEWCYCLE-ISSUE] performs the same step, but
additionally updates the liveness map by issuing new
live bits for the source variables. Both rules increment
the cycle counter c. The rules issue a label l ∈ Labels,
((STORES×LIVEMAP× INFMAPS×N× {L,D})]ε)
which is written above the arrow (all previous rules
issue the empty label ε). The label contains the current
store, liveness map, influence map, clock cycle, and a
bit indicating whether new live-bits have been issued.
Labels are used to construct the trace of an execution, as
we will discuss later.

Overall Transition . We define the overall transition

8

relation ∈ Configs× Labels×Configs by fixing an
order in which to apply the relations. Whenever a con-
tinuous assignment step (relation C) can be applied,
that step is taken. Whenever no continuous assignment
step can be applied, however, a per-process step (relation
 P) can be applied, a P step is taken. If no continu-
ous assignment and process local steps can be applied,
however, an non-blocking assignment step (relation N)
is applicable, a N step is taken. Finally, if neither con-
tinuous assignment, per-process, or non-blocking steps
can be applied, the program moves to a new clock cy-
cle by applying a global step (relation G). Our overall
transition relation closely follows the Verilog simulation
reference model from Section 11.4 of the standard [12].

Executions and Traces. An execution is a finite se-
quence of configurations and transition labels r ,

Σ0l0Σ1 . . .Σm−1lm−1Σm such that Σi
li Σi+1 for i ∈

{1, . . . ,m−1}. We call Σ0 initial state and require that all
taint bits are set to D, the influence map maps each vari-
able to the empty set, the assignment buffer is empty,
the current program is the empty program ›, and the
clock is set to 0. The trace of an execution is the
sequence of its (non-empty) labels. For a trace π ,
(σ0,τ0,θ0,c0,b0) . . .(σn−1,τn−1,θn−1cn−1,bn−1) ∈
Labels∗ and for i ∈ {0, . . . ,n− 1} we let store(π, i) ,
σi, live(π, i) , τi, inf (π, i) , θi, clk(π, i) , ci and
reset(π, i) = bi, and say the trace has length n. For a
program P we use TRACES(P) ∈ P(Labels∗) to denote
the set of its traces, i.e., all traces with initial program P.

4 Constant-Time Execution
We now first define constant-time execution with respect
to a set of assumptions. We then define liveness equiva-
lence and show that the two notions are equivalent.

4.1 Constant-Time Execution

Assumptions. For a formula ϕ that ranges over two dis-
joint sets of variables VARSL and VARSR and stores
σL and σR such that dom σL = VARSL and dom σR =

VARSR, we write σL,σR |=ϕ to denote that formula ϕ
holds when evaluated on σL and σR. For some pro-
gram P and a set of assumptions A , (INIT, ALL), we
say that two traces πL,πR ∈ TRACES(P) of length n
satisfy A if i) for each formula ϕI ∈ INIT, ϕI holds
initially, and ii) for each formula ϕA ∈ ALL, ϕA
hold throughout, i.e., store(πL, 0),store(πR, 0) |=ϕI and
store(πL, i),store(πR, i) |=ϕA, for 06 i6 n−1. Intu-
itively, pairs of traces that satisfy the assumptions are
“low” or “input” equivalent.

Constant Time Execution. For a program P, assump-
tions A and traces πL,πR ∈ TRACES(P) of length n that
satisfy A, πL and πR are constant time with respect to A,
if they produce the same influence sets for all sinks, i.e.,
inf (πL, i)(v) = inf (πR, i)(v), for 0 6 i 6 n− 1 and all
v ∈ Sink, and where two sets are equal if they contain the
same elements. A program is constant time with respect
to A, if all pairs of its traces that satisfy A are constant
time.

4.2 Liveness Equivalence

t-Trace. For a trace π, we say that π is a t-trace, if
reset(π,t) = L and reset(π, i) =D, for i 6= t.
Liveness Equivalence. For a program P, let πL,πR ∈
TRACES(P), such that both πL and πR are of length n.
We say that πL and πR are t-liveness equivalent, if both
are t-traces, and live(πL, i)(v) = live(πR, i)(v), for 06
i6 n−1 and all v ∈ Sink. A program is t-liveness equiv-
alent, with respect to a set of assumptions A, if all pairs
of t-traces that satisfy A are t−liveness equivalent. Fi-
nally, a program is liveness equivalent with respect to A,
if it is t-liveness equivalent with respect to A, for all t.

4.3 Equivalence
We can now state our equivalence theorem.

Theorem 1. For all programs P and assumptions A, P
executes in constant-time with respect to A if and only if
it is liveness equivalent with respect to A.

We first give a lemma which states that, if a register is
t-live, then t is in its influence set.

Lemma 1. For any t-trace π of length n, index 06 i6
n−1, and variable v, if v is t−live, i.e., live(π, i)(v) = L,
then t is in v’s influence map, i.e., t ∈ inf (π, i)(v).

We can now state our proof for Theorem 1.

Proof Theorem 1. The interesting direction is “right-to-
left”, i.e., we want to show that a liveness equivalent
program is also constant-time. We prove the contrapos-
itive, i.e., if a program violates constant-time, it must
also violate liveness equivalence. For a proof by con-
tradiction, we assume that P violates constant time ex-
ecution, but satisfies liveness equivalence. If P violates
constant-time execution, then there must be a sink v∗,
two trace π∗L,π∗R ∈ TRACES(P) that satisfy A, and some
index i∗ such that inf (π∗L, i∗)(v∗) 6= inf (π∗R, i∗)(v∗), and
therefore without loss of generality, there is a cycle t∗,
such that t∗ ∈ inf (π∗L, i∗)(v∗) and t∗ 6∈ inf (π∗R, i∗)(v∗).

9

[SEQ-STEP]
〈σ,µ,θ,ev,τ,s1, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,s ′1, I,c〉

〈σ,µ,θ,ev,τ, [s1;s2], I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′, [s ′1;s2], I,c〉

[PAR-STEP]
〈σ,µ,θ,ev,τ,P, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,P ′, I,c〉

〈σ,µ,θ,ev,τ,P ‖Q, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,P ′ ‖Q, I,c〉

[B-ASN]
e,σ,τ,θ 99K v,t,i σ ′ =σ[x← v] τ ′ = τ[x← t] θ ′ = θ[x← i]

〈σ,µ,θ,ev,τ,x = e, I,c〉 P 〈σ ′,µ,θ ′,ev∪ {x},τ ′,skip, I,c〉

[NB-ASN]
e,σ,τ,θ 99K v,t,i µ ′ =µ[id← (x,v,t,i) ·q]

〈σ,µ[id←q],θ,ev,τ,(x⇐ e)id , I,c〉 P 〈σ,µ ′,θ,ev,τ,skip, I,c〉

[NB-APP]
σ ′ =σ[x← v] µ ′ =µ[id←q] θ ′ = θ[x← i] τ ′ = τ[x← t] ev ′ = ev∪ {x}

〈σ,µ[id←q ·(x,v,t,i)],θ,ev,τ,P, I,c〉 N 〈σ ′,µ ′,θ ′,ev ′,τ ′,P, I,c〉

[C-ASN]
e,σ,τ,i 99K v,t,i y∈ VARS(e) σ ′ =σ[x← v] τ ′ = τ[x← t] θ ′ = θ[x← i]

〈σ,µ,θ,ev∪ {y},τ,x := e, I,c〉 C 〈σ ′,µ,θ ′,ev∪ {x,y},τ ′,skip, I,c〉

[NEWCYCLE]
σ ′ ,σ[Wires←∗] τ ′ , τ[Src←D][Wires←D] θ ′ , θ[Wires←∅][Src← {c+1}] µ ′ ,µ[PIDs← ε]

〈σ,µ,θ,ev,τ,P, I,c〉 (σ,τ,θ,c,D)
 G 〈σ ′,µ ′,θ ′,∅,τ,u REPEAT(I), I,c+1〉

[NEWCYCLE-ISSUE]
σ ′ ,σ[Wires←∗] τ ′ , τ[Src← L][(VARS−Src)←D] θ ′ , θ[Wires←∅][Src← {c+1}] µ ′ ,µ[PIDs← ε]

〈σ,µ,θ,ev,τ,P, I,c〉 (σ,τ,θ,c,L)
 G 〈σ ′,µ ′,θ ′,∅,τ ′,u REPEAT(I), I,c+1〉

Figure 13: Per-thread transition relation P, non-blocking transition relation N, continuous transition relation C, and global
restart relation G .

We can find two traces t∗-traces π̂L and π̂R that only
differ from π∗L and π∗R in their liveness maps. But
then, since the traces are t∗-liveness equivalent, by def-
inition, at index i∗ both π̂L and π̂R are t∗−live, i.e.,
live(π̂L, i∗)(v∗) = live(π̂R, i∗)(v∗) = L and, by lemma 1,
t∗ ∈ inf (π̂R, i∗)(v∗). Since π̂R and π∗R only differ in their
liveness map, this implies t∗ ∈ inf (π∗R, i∗)(v∗), from
which the contradiction follows.

5 Verifying Constant Time Execution
In this section, we describe how IODINE verifies liveness
equivalence by using standard techniques.

Algorithm IODINE. Given a VINTER program P, a set
of input/output specifications IO and a set of assump-
tions A, IODINE checks that P executes in constant time
with respect to A. For this, IODINE first checks for race-
freedom. If a race is detected, IODINE returns a witness
describing the violation. If no race is detected, IODINE

takes the following four steps: (1) It builds a set of Horn
clause constraints hs [26, 32] whose solution character-
izes the set of all configurations that are reachable by
the per-process product and satisfy A. (2) Next, it builds

a set of constraints cs whose solutions characterize the
set of liveness equivalent states. (3) It then computes a
solution Sol to hs and checks whether the solution sat-
isfies cs. To find a more precise solution, the user can
supply additional hints in the form of a set of predicates
which we describe later. (4) If the check succeeds, P ex-
ecutes in constant time with respect to A, otherwise, P
can potentially exhibit timing variations.

Constraint Solving. IODINE solves the reachability con-
straints by using Liquid Fixpoint [10], which computes
the strongest solution that can be expressed as a con-
junction of elements of a set of logical formulas. These
formulas are composed of a set of base predicates. We
use base predicates that track equalities between the live-
ness bits and values of each variable between the two
runs. In addition to these base predicates, we use hints
that are defined by the user. We discuss in § 6 which
predicates were used in our benchmarks.

6 Implementation and Evaluation
In this section, we describe our implementation and eval-
uate IODINE on several open source VERILOG projects,

10

spanning from RISC processors, to floating-point units
and crypto cores. We find that IODINE is able to show
that a piece of code is not constant-time and otherwise
verify that the hardware is constant-time in a matter of
seconds. Except our processor use cases, we found the
annotation burden to be light weight—often less than 10
lines of code. All the source code and data are available
on GitHub, under an open source license.5

6.1 Implementation

IODINE consists of a front-end pass, which takes anno-
tated hardware descriptions and compiles them to VIN-
TER, and a back-end that verifies the constant-time execu-
tion of these VINTER programs. We think this modular
designs will make it easy for IODINE to be extended to
support different hardware description languages beyond
VERILOG (e.g., VHDL or Chisel [19]).

Our front-end extends the Icarus Verilog parser [9]
and consists of 2000 lines of C++. Since VINTER shares
many similarities with VERILOG, this pass is relatively
straightforward, however, IODINE does not distinguish
between clock edges (positive or negative) and, thus, re-
moves them during compilation. Moreover, our prototype
does not support the whole VERILOG language (e.g., we
do not support assignments to multiple variables).

IODINE’s back-end takes a VINTER program and, fol-
lowing § 5, generates and checks a set of verification
conditions. We implement the back-end in 4000 lines of
Haskell. Internally, this Haskell back-end generates Horn
clauses and solves them using the liquid-fixpoint library
that wraps the Z3 [29] SMT solver. Our back-end outputs
the generated invariants, which (1) serve as the proof of
correctness when the verification succeeds, or (2) helps
pinpoint why verification fails.

Tool Correctness. The IODINE implementation and Z3
SMT solver [29] are part of our trusted computing base.
This is similar to other constant-time and information
flow tools (e.g., SecVerilog [55] and ct-verif [16]). As
such, the formal guarantees of IODINE can be under-
mined by implementation bugs. We perform several tests
to catch such bugs early—in particular, we validate: (1)
our translation into VINTER against the original VER-
ILOG code; (2) our translation from VINTER into Horn
clauses against our semantics; and, (3) the generated in-
variants against both the VINTER and VERILOG code.

5https://github.com/gokhankici/iodine

6.2 Evaluation
Our evaluation seeks to answer three questions: (Q1)
Can IODINE be easily applied to existing hardware de-
signs? (Q2) How efficient is IODINE? (Q3) What is the
annotation burden on developers?

(Q1) Applicability. To evaluate its applicability, we run
IODINE on several open source hardware modules from
GitHub and OpenCores. We chose VERILOG programs
that fit into three categories—processors, crypto-cores,
and floating-point units (FPUs)—these have previously
been shown to expose timing side channels. In particular,
our benchmarks consist of:

I MIPS- and RISCV-32I-based pipe-lined CPU cores
with a single level memory hierarchy.

I Crypto cores implementing the SHA 256 hash function
and RSA 4096-bit encryption.

I Two FPUs that implement core operations (+,−,×,÷)
according to the IEEE-754 standard.

I An ALU [1] that implements (+,−,×,�, . . .).

In our benchmarks, following our attacker model from
§ 2.1, we annotated all the inputs to the computation. For
example, this includes the sequence of instructions for
the benchmarks with a pipeline (i.e., MIPS, RISC-V, FPU
and FPU2) in addition to other control inputs, and all the
top level VERILOG inputs for the rest (i.e., SHA-256,
ALU and RSA). Similarly, we annotated as sinks, all the
outputs of the computation. In the case of benchmarks
with a pipeline, this includes the output from the last stage
and other results (e.g., whether the result is NaN in FPU),
and all the top level VERILOG outputs for the rest. The
modifications we had to perform to run IODINE on these
benchmarks were minimal and due to parser restrictions
(e.g., desugaring assignments to multiple variables into
individual assignments, unrolling the code generated by
the loop inside the generate blocks).

(Q2) Efficiency. To evaluate its efficiency, we run IO-
DINE on the annotated programs. As highlighted in Ta-
ble 1, IODINE can successfully verify different VERILOG

programs of modest size (up to 1.1K lines of code) rel-
atively quickly (<20s). All but the constant-time FPU
finished in under 3 seconds. Verifying the constant-time
FPU took 12 seconds, despite the complexity of IEEE-
754 standard which manifests as a series of case splits
in VERILOG. We find these measurements encouraging,
especially relative to the time it takes to synthesize VER-
ILOG— verification is orders of magnitude smaller.

Discovered Timing Variability. Running IODINE re-

11

https://github.com/gokhankici/iodine

Name #LOC
#Assum

CT Check (s)
#flush #always

MIPS [5] 434 31 2 X 1.329
RISC-V [7] 745 50 19 X 1.787
SHA-256 [8] 651 5 3 X 2.739
FPU [6] 1182 0 0 X 12.013
ALU [1] 913 1 5 X 1.595
FPU2 [3] 272 3 4 7 0.705
RSA [4] 870 4 0 7 1.061

Total 5067 94 33 - 21.163

Table 1: #LOC is the number of lines of Verilog code, #Assum
is the number of assumptions (excluding source and sink); flush
and always are annotations of the form init and � respectively,
CT shows if the program is constant-time, and Check is the
time IODINE took to check the program. All experiments were
run on a Intel Core i7 processor with 16 GB RAM.

vealed that two of our use cases are not constant-time:
one of the FPU implementations and the RSA crypto-
core. The division module of the FPU exhibits timing
variability depending on the value of the operands. In
particular, similar to the example from § 2, the module
triggers a fast path if the operands are special values.

The RSA encryption core similarly exhibited time vari-
ability. In particular, the internal modular exponentiation
algorithm performs a Montgomery multiplication de-
pending on the value of a source bit ei: if ei = 1 then c :=
ModPro(c,m). Since e is a secret, this timing variability
can be exploited to reveal the secret key [27, 34].

(Q3) Annotation burden. While IODINE automatically
discovers proofs, the user has to provide a set of assump-
tions A under which the hardware design executes in
constant time. To evaluate the burden this places on de-
velopers, we count the number and kinds of assumptions
we had to add to each of our use cases. Table 1 sum-
marizes our results: except for the CPU cores, most of
our other benchmarks required only a handful of assump-
tions. Beyond declaring sinks and sources, we rely on
two other kinds of annotations. First, we find it useful
to specify that the initial state of an input variable x is
equal in any pair of runs, i.e., init(xL = xR). This assump-
tion essentially specifies that register x is flushed, i.e., is
set to a constant value, to remove any effects of a pre-
vious execution from our initial state. Second, we find
it useful to specify that the state of an input variable x
is equal, throughout any pair of runs, i.e., �(xL = xR).
This assumption is important when certain behavior is
expected to be the same in both runs. We now describe
these assumptions for our benchmarks.

I MIPS: We specify that the values of the fetched in-

structions, and the reset bit are the same.

I RISC-V: In addition to the assumptions required by
the MIPS core, we also specify that both runs take the
same conditional branch, and that the type of mem-
ory access (read or write) is the same in both runs
(however, the actual values remain unrestricted). This
corresponds to the assumption that programs running
on the CPU do not branch or access memory based
on secret values. Finally, CSR registers must not be
accessed illegally (see § 6.3).

I ALU: Both runs execute the same type of operations
(e.g., bitwise, arithmetic), operands have the same bit
width, instructions are valid, reset pins are the same.

I SHA-256 and FPU (division): We specify that the
reset and input-ready bits are the same.

In all cases, we start with no assumptions and add the
assumptions incrementally by manually investigating the
constant-time “violation” flagged by IODINE.

Identifying Assumptions. From our experience, the as-
sumptions that a user needs to specify fall into three
categories. The first are straightforward assumptions—
e.g., that any two runs execute the same code. The sec-
ond class of assumptions specify that certain registers
need to be flushed, i.e., they need to initially be the same
(flushed) for any two runs. To identify these, we first
flush large parts of circuits, and then, in a minimization
step, we remove all unnecessary assumptions. The last,
and most challenging, are implicit invariants on data and
control—e.g., the constraints on CSR registers. IODINE

performs delta debugging to help pinpoint violations but,
ultimately, these assumptions require user intervention
to be resolved. Indeed, specifying these assumptions re-
quire a deep understanding of the circuit and its intended
usage. In our experience, though, only a small fraction
of assumptions fall into this third category.

User Hints. For one of our benchmarks (FPU), we
needed to supply a small number of user hints (<5) to the
solver. These hints come in the form of predicates that
track additional equalities between liveness bits of the
same run. This is required, when the two executions can
take different control paths, yet execute in constant time.
We hope to remove those hints in the future.

6.3 Case Studies
We now illustrate how IODINE verifies benchmarks with
challenging features and helps explicate conditions under
which a hardware design is constant-time, using exam-
ples from our benchmarks.

12

1 always @(*) begin

2 if (...)

3 Stall = 1; else Stall = 0;

4 end

5 always @(posedge clk) begin

6 if (Stall)

7 ID_instr <= ID_instr;

8 else

9 ID_instr <= IF_instr;

10 end

Figure 14: Stalling in MIPS [5].

History Dependencies. In hardware, the result of a com-
putation often depends on inputs from previous cycles,
i.e., the computation depends on execution history. For
example, when a hardware unit is in use by a previous
instruction, the CPU stalls until the unit becomes free.

The code snippet in Fig. 14 contains a simplified ver-
sion of the stalling logic from our MIPS processor bench-
mark. On line 3, register Stall is set to 1 if instructions
in the execute and instruction decode stages conflict. Its
value is then used to update the state of each pipeline
stage. In this example, if the pipeline is stalled, the value
of the register ID_instr, which corresponds to the instruc-
tion currently executing in the instruction decode stage,
stays the same. Otherwise, it is updated with IF_instr –
the value coming from the instruction fetch stage.

Without further assumptions, IODINE flags this be-
havior as non-constant time, as an instruction can take
different times to process, depending on which other
instructions are before it in the pipeline. However, after
adding the assumption that any two runs execute the same
sequence of instructions, IODINE is able to prove that
Stall has the same value in any pair of traces, from which
the constant time behavior follows. Importantly, however,
we have no assumption on the state of the registers and
memory elements that the instructions use.

Diverging Control Flow. Methods for enforcing constant
time execution of software often require that any two exe-
cutions take the same control flow path [16]. In hard-
ware, this assumption is too restrictive. Consider the
code snippet in Fig. 15 taken from our constant time
FPU benchmark (the full logic is shown in Fig. 20 of
the Appendix). The first always block calculates the
sign bit of the multiplication result (sign_mul_r), us-
ing inputs opa and opb. The FPU uses this bit in line
17 (through sign_mul_final), to calculate output out
in line 12. Even though we cannot assume that all exe-
cutions select the same branches, IODINE can infer that
every branch produces the same influence sets for the

1 always @(*)

2 case({opa[31], opb[31]})

3 2’b0_0: sign_mul_r <= 0;

4 2’b0_1: sign_mul_r <= 1;

5 ...

6 endcase

7 ...

8 assign sign_mul_final = (sign_exe_r & ...) ?

9 !sign_mul_r : sign_mul_r;

10 ...

11 always @(posedge clk)

12 out <= { (... ?

13 (f2i_out_sign &

14 !(qnan_d | snan_d)) :

15 (((fpu_op_r3 == 3’b010)

16 & ... ?

17 sign_mul_final : ...))) };

Figure 15: Diverging control flow in FPU [6].

variables assigned under them. Using this information,
IODINE can prove that the FPU operates in constant-time,
despite diverging control flow paths.

Assumptions. IODINE can be used to inform software
mechanisms for mitigating timing side-channels by ex-
plicating – and verifying – conditions under which a
circuit executes in constant time. Consider Figure 16,
which shows the logic for updating Control and Status
Registers (CSR) in our RISC-V benchmark. The wire
de_illegal_csr_access, defined on line 1 is set by
checking whether a CSR instruction is executed in non-
privileged mode. For this, the circuit compares the ma-
chine status register csr_mstatus to the instructions
status bit. When de_illegal_csr_access is set, the
branch instruction on line 8 traps the error and jumps
to a predefined handler code. In order to prove that the
cycle executes in constant-time, we add an assumption
stating that CSR registers are not accessed illegally. This
assumption translates into an obligation for software miti-
gation mechanisms to ensure proper use of CSR registers.

7 Limitations and Future Work
We discuss some of IODINE’s limitations.

Clocks and Assumptions. For example, IODINE presup-
poses a single fixed-cycle clock and thus does not allow
for checking arbitrary VERILOG programs. We leave
an extension to multiple clocks as future work. Simi-
larly, IODINE requires users to add assumptions by hand
in somewhat ad-hoc trial-and-error fashion. For large
circuits this could prove extremely difficult and poten-
tially lead to errors where erroneous assumptions may
lead IODINE to falsely mark a variable time circuit as

13

1 wire de_illegal_csr_access =

2 de_valid &&

3 de_inst‘opcode == ‘SYSTEM &&

4 de_inst‘funct3 != ‘PRIV &&

5 (csr_mstatus‘PRV < de_inst[29:28] ||

6 ...);

7 always @(posedge clk) begin

8 if (de_illegal_csr_access) begin

9 ex_restart <= 1;

10 ex_next_pc <= ...;

11 end

12 end

Figure 16: Update of CSRs in RISC-V [7].

constant-time. We leave the inference and validation of
assumptions to future work.

Scale. We evaluate IODINE on relatively small sized (500-
1000 lines) hardware designs. We did not (yet) evaluate
the tool on larger circuits, such as modern processors
with advanced features like a memory hierarchy, and
out-of-order and transient-execution. In principle, these
features boil down to the same primitives (always blocks
and assignments) that IODINE already handles. But, we
anticipate that scaling will require further changes to IO-
DINE, for instance, finding per-module invariants rather
than the naive in-lining currently performed by IODINE.
We leave the evaluation to larger systems to future work.

8 Related Work

Constant-Time Software. Almeida et al. [16] verify
constant-time execution of cryptographic libraries for
LLVM. Their notion of constant-time execution is based
on a leakage model. This choice allows them to be flex-
ible enough to capture various properties like (timing)
variability in memory access patterns and improper use
of timing sensitive instructions like DIV. Unfortunately,
their notion of constant-time is too restrictive for our
setting, as it requires the control flow path of any two
runs to be the same. This would, for example, incorrectly
flag our FPU multiplier as variable-time. Like IODINE,
their tool ct-verif employs a product construction that use
the fact that loops can often be completely unrolled in
cryptographic code, whereas we rely on race freedom.

Barthe et al. [20] build on the CompCert compiler [38]
to enforce constant time execution through an informa-
tion flow type system.

Reparaz et al. [46] present a method for discovering
timing variability in existing systems through a black-box
approach, based on statistical measurements.

All of these approaches address constant-time execu-

tion in software and do not translate to the hardware
setting (see § 2).

Self-Composition and Product Programs. Barthe et
al. [22] introduce the notion of self composition to ver-
ify information flow. Terauchi and Aiken generalize this
construction to arbitrary 2-safety properties [49], i.e.,
properties that relate two runs, and Clarkson and Schnei-
der [28] generalize to multiple runs. Barthe et al. [21]
introduce product programs that, instead of conjoining
copies sequentially, compose copies in lock-step; this
was later used in other tools like ct-verif. This technique
is further developed in [48], which presents an exten-
sion of Hoare logic to hyper-properties that computes
lock-step compositions on demand, per Hoare-triple.

Information Flow Safety and Side Channels. There are
many techniques for proving information flow safety
(e.g., non-interference) in both hardware and software.
Kwon et al. [36] prove information flow safety of hard-
ware for policies that allow explicit declassification and
are expressed over streams of input data. They construct
relational invariants by using propositional interpolation
and implicitly build a full self-composition; by contrast,
we leverage race-freedom to create a per-thread product
which contains only a subset of behaviors.

SecVerilog [55] proves timing-sensitive non-
interference for circuits implemented in an extension of
VERILOG that uses value-dependent information flow
types. Caisson [39] is a hardware description language
that uses information flow types to ensure that generated
circuits are secure. GLIF [50, 51] tracks the flow of
information at the gate level to eliminate explicit and
covert channels. All these approaches have been used to
implement information flow secure hardware that do not
suffer from (timing) side-channels.

IODINE focuses on clock-precise constant-time execu-
tion, not information flow. The two properties are related,
but information flow safety does not imply constant-time
execution nor the converse (see Appendix A.1 for de-
tails). Moreover, SecVerilog, Caisson, and GLIF take a
language-design approach whereas we take an analysis-
centric view that is more suitable for verifying existing
hardware designs. Thus, we see our work as largely com-
plementary. Indeed, it may be useful to use IODINE along-
side these HDLs to verify constant-time execution for
parts of the hardware that handle secret data only, and are
thus not checked for timing variability, thereby extending
their attacker model.

Combining Hardware & Software Mitigations. Hyper-
Flow [30] and GhostRider [42], take hardware/soft-

14

ware co-design approach to eliminating timing channels.
Zhang et al. [54] present a method for mitigating timing
side-channels in software and give conditions on hard-
ware that ensure the validity of mitigations is preserved.
Instead of eliminating timing flows all together, they spec-
ify quantitative bounds on leakage and offers primitives
to mitigate timing leaks through padding. Many other
tools [11, 13, 37, 47, 52] automatically quantify leakage
through timing and cache side-channels. Our approach
is complementary and focuses on clock-precise analysis
of existing hardware. However, the explicit assumptions
that IODINE needs to verify constant-time behavior can
be used to inform software mitigation techniques.

References
[1] https://github.com/scarv/xcrypto-ref.

[2] ARM A64 instruction set architecture.
https://static.docs.arm.com.

[3] https://github.com/dawsonjon/fpu.

[4] https://github.com/fatestudio/RSA4096.

[5] https://github.com/gokhankici/iodine.

[6] https://github.com/monajalal/fpga_-
mc/tree/master/fpu.

[7] https://github.com/tommythorn/yarvi.

[8] https://opencores.org/project/sha_core.

[9] Icarus verilog. http://iverilog.icarus.com/.

[10] Liquid fixpoint. https://github.com/ucsd-progsys.

[11] TIS-CT. http://trust-in-soft.com/tis-ct/.

[12] IEEE Standard for Verilog Hardware Description
Language. IEEE Std 1364-2005, 2005.

[13] J Bacelar Almeida, Manuel Barbosa, Jorge S Pinto,
and Bárbara Vieira. Formal verification of side-
channel countermeasures using self-composition.
In Science of Computer Programming, 2013.

[14] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt
Schmidt, and Pierre-Yves Strub. Jasmin: High-
assurance and high-speed cryptography. In CCS,
2017.

[15] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, and François Dupressoir. Verifiable side-
channel security of cryptographic implementations:
Constant-time mee-cbc. In FSE, 2016.

[16] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, François Dupressoir, and Michael Emmi.
Verifying constant-time implementations. In
USENIX Security, 2016.

[17] Marc Andrysco, David Kohlbrenner, Keaton Mow-
ery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
On subnormal floating point and abnormal timing.
In S&P, 2015.

[18] Marc Andrysco, Andres Noetzli, Fraser Brown,
Ranjit Jhala, and Deian Stefan. Towards verified,
constant-time floating point operations. In CCS,
2018.

[19] Jonathan Bachrach, Huy Vo, Brian C. Richards,
Yunsup Lee, Andrew Waterman, Rimas Avizienis,
John Wawrzynek, and Krste Asanovic. Chisel: con-
structing hardware in a scala embedded language.
In DAC, 2012.

[20] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,
Carlos Daniel Luna, and David Pichardie. System-
level non-interference for constant-time cryptogra-
phy. In CCS, 2014.

[21] Gilles Barthe, Juan Manuel Crespo, and Cesar Kunz.
Relational verification using product programs. In
FM, 2011.

[22] Gilles Barthe, Pedro R. D’Argenio, and Tamara
Rezk. Secure information flow by self-composition.
In CSF, 2004.

[23] Daniel J. Bernstein. The poly1305-aes message-
authentication code. In Fast Software Encryption,
2005.

[24] Daniel J. Bernstein. Curve25519: New diffie-
hellman speed records. In Public Key Cryptography,
2006.

[25] Daniel J Bernstein. The salsa20 family of stream
ciphers. In New stream cipher designs. Springer,
2008.

[26] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and
Andrey Rybalchenko. Horn clause solvers for pro-
gram verification. In Fields of Logic and Computa-
tion. 2015.

15

https://github.com/scarv/xcrypto-ref
https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf
https://github.com/dawsonjon/fpu
https://github.com/fatestudio/RSA4096
https://github.com/gokhankici/iodine/tree/master/benchmarks/472-mips-pipelined
https://github.com/monajalal/fpga_mc/tree/master/fpu
https://github.com/monajalal/fpga_mc/tree/master/fpu
https://github.com/tommythorn/yarvi
https://opencores.org/project/sha_core
http://iverilog.icarus.com/
https://github.com/ucsd-progsys/liquid-fixpoint
http://trust-in-soft.com/tis-ct/

[27] David Brumley and Dan Boneh. Remote timing
attacks are practical. Computer Networks, 2005.

[28] Michael R. Clarkson and Fred B. Schneider. Hy-
perproperties. Journal of Computer Security, 2010.

[29] Leonardo de Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In TACAS, 2008.

[30] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers,
and G Edward Suh. Hyperflow: A processor archi-
tecture for nonmalleable, timing-safe information
flow security. In SIGSAC, 2018.

[31] Michael J. C. Gordon. The semantic challenge of
verilog hdl. In LICS, 1995.

[32] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu
Popeea, and Andrey Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, 2012.

[33] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, 2018.

[34] Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems.
In CRYPTO, 1996.

[35] David Kohlbrenner and Hovav Shacham. On the
effectiveness of mitigations against floating-point
timing channels. In USENIX Security, 2017.

[36] Hyoukjun Kwon, William Harris, and Hadi
Esameilzadeh. Proving flow security of sequen-
tial logic via automatically-synthesized relational
invariants. In CSF, 2017.

[37] Adam Langley. ctgrind: Checking that
functions are constant time with valgrind.
https://github.com/agl/ctgrind/.

[38] Xavier Leroy. Formal certification of a compiler
back-end, or: programming a compiler with a proof
assistant. In POPL, 2006.

[39] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth
Kashyap, Frederic T Chong, Timothy Sherwood,
and Ben Hardekopf. Caisson: a hardware descrip-
tion language for secure information flow. In PLDI,
2011.

[40] Linux on ARM. ARM64 prepping ARM v8.4 fea-
tures, KPTI improvements for Linux 4.17. https:
//www.linux-arm.info/.

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX
Security, 2018.

[42] Chang Liu, Austin Harris, Martin Maas, Michael
Hicks, Mohit Tiwari, and Elaine Shi. Ghostrider: A
hardware-software system for memory trace oblivi-
ous computation. SIGPLAN Notices, 2015.

[43] Jonas Magazinius, Alejandro Russo, and Andrei
Sabelfeld. On-the-fly inlining of dynamic security
monitors. In IFIP, 2010.

[44] Susan Owicki and David Gries. Verifying proper-
ties of parallel programs: an axiomatic approach.
Communicationsof the ACM, 1976.

[45] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure,
precise, and fast floating-point operations on x86
processors. In USENIX Security, 2016.

[46] Oscar Reparaz, Joseph Balasch, and Ingrid Ver-
bauwhede. Dude, is my code constant time? In
DATE, 2017.

[47] Bruno Rodrigues, Fernando Magno Quin-
tão Pereira, and Diego F Aranha. Sparse
representation of implicit flows with applications
to side-channel detection. In CCC, 2016.

[48] Marcelo Sousa and Isil Dillig. Cartesian hoare logic
for verifying k-safety properties. In PLDI, 2016.

[49] Tachio Terauchi and Alex Aiken. Secure informa-
tion flow as a safety problem. In SAS, 2005.

[50] Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan
Valamehr, Timothy Levin, Ben Hardekopf, Ryan
Kastner, Frederic T. Chong, and Timothy Sherwood.
Crafting a usable microkernel, processor, and i/o
system with strict and provable information flow
security. In ISCA, 2011.

[51] Mohit Tiwari, Hassan MG Wassel, Bita Mazloom,
Shashidhar Mysore, Frederic T Chong, and Timothy
Sherwood. Complete information flow tracking
from the gates up. In Sigplan Notices, 2009.

16

https://github.com/agl/ctgrind/
https://www.linux-arm.info/
https://www.linux-arm.info/

[52] Cacheaudit: A tool for the static analysis of
cache side channels. Goran doychev and dominik
feld and boris köpf and laurent mauborgne and jan
reineke. In USENIX Security, 2013.

[53] Conrad Watt, John Renner, Natalie Popescu, Sunjay
Cauligi, and Deian Stefan. Ct-wasm: Type-driven
secure cryptography for the web ecosystem. 2019.

[54] Danfeng Zhang, Aslan Askarov, and Andrew C.
Myers. Language-based control and mitigation of
timing channels. In PLDI, 2012.

[55] Danfeng Zhang, Yao Wang, G. Edward Suh, and
Andrew C. Myers. A hardware design language
for timing-sensitive information-flow security. In
ASPLOS, 2015.

A Appendix

A.1 Comparison to Information Flow
Checking

In this section, we discuss the relationship between con-
stant time execution and information flow checking. In-
formation flow safety (IFS) and constant time execution
(CTE) are incomparable, i.e., IFS does not imply CTE,
and vice versa. We illustrate this using two examples: one
is information flow safe but does not execute in constant
time and one executes in constant time but is not informa-
tion flow safe. Figure 17 contains example program EX2
which is information flow safe but not constant time. The
example contains three registers that are all typed high
as indicated by the annotation H. The program is infor-
mation flow safe, as there are no flows from high to low.
The program does however not execute in constant time
when in is designated as source and out is designated as
sink and slowL 6= slowR.

1 // source(in); sink(out);

2 // � (slowL = slowR);

3 reg in , flp_res , slow , out; {H}

4 always @(posedge clk) begin

5 if (slow) begin

6 flp_res <= in;

7 out <= flp_res;

8 end else

9 out <= in;

10 end

Figure 17: EX2: Non-constant time but info-flow safe.

Next, consider Figure 18 that contains program EX3
which executes in constant time but is not information

flow safe. EX3 violates information flow safety by assign-
ing high input sec to low output out. The example how-
ever executes constant time with source in and sink out un-
der the assumption that + does not contain asynchronous
assignments.

1 // source(in); sink(out);

2 // � (slowL = slowR);

3 reg in, out; {L}

4 reg sec; {H}

5 always @(posedge clk) begin

6 out <= in + sec;

7 end

Figure 18: EX3: Constant time but not info-flow safe.

A.2 Translation
In Figure 19, we define a relation⇒ that translates VER-
ILOG programs into VINTER programs. The relation is
given in terms of inference rules where a transition step
in the rule’s conclusion (below the line) is applicable
only if all its preconditions (above the line) are met. Both
always- and assign-blocks are translated into threads that
are executed at every clock tick using withclock. Each
process is given a unique id. Our translation does not dis-
tinguish between posedge and negedge events thereby
relaxing the semantics by allowing them to occur in any
order. assign blocks are transformed into threads execut-
ing a continuous assignment. Blocking and non-blocking
assignments remain unchanged.

P⇒ P ′ Q⇒Q ′

P ·Q⇒ P ′ ‖Q ′
s1⇒ s ′1 . . . sn⇒ s ′n

begin s1; . . . ;sn; end⇒ s ′1; . . . ;s ′n

s⇒ s ′ id fresh

always @(_) s⇒ repeat [s ′]id

id fresh

assign v = e⇒ repeat [v := e]id

s1⇒ s ′1 s2⇒ s ′2
if (e) s1 else s2 end ⇒ ite(e,s ′1,s ′2)

Figure 19: Translation from VERILOG to VINTER.

17

1 always @(*)

2 case({opa[31], opb[31]})

3 2’b0_0: sign_mul_r <= 0;

4 2’b0_1: sign_mul_r <= 1;

5 ...

6 endcase

7 assign sign_mul_final =

8 (sign_exe_r &

9 ((opa_00 & opb_inf) |

10 (opb_00 & opa_inf))) ?

11 !sign_mul_r : sign_mul_r;

12 always @(posedge clk)

13 out <= {

14 (((fpu_op_r3 == 3’b101) & out_d_00) ?

15 (f2i_out_sign & !(qnan_d | snan_d)) :

16 (((fpu_op_r3 == 3’b010) &

17 !(snan_d | qnan_d)) ?

18 sign_mul_final :

19 (((fpu_op_r3 == 3’b011) &

20 !(snan_d | qnan_d)) ? sign_div_final :

21 ((snan_d | qnan_d | ind_d) ?

22 nan_sign_d :

23 (output_zero_fasu ?

24 result_zero_sign_d :

25 sign_fasu_r))))) ,

26 ((mul_inf | div_inf |

27 (inf_d & (fpu_op_r3 != 3’b011) &

28 (fpu_op_r3 != 3’b101)) |

29 snan_d | qnan_d) &

30 fpu_op_r3 != 3’b100 ? out_fixed :

out_d) };

Figure 20: Example diverging computation in [6]

18

	Introduction
	Overview
	Constant-Time For Hardware
	 Liveness Equivalence
	Verifying Liveness Equivalence

	Syntax and Semantics
	Preliminaries
	Syntax
	Semantics

	Constant-Time Execution
	Constant-Time Execution
	Liveness Equivalence
	Equivalence

	Verifying Constant Time Execution
	Implementation and Evaluation
	Implementation
	Evaluation
	Case Studies

	Limitations and Future Work
	Related Work
	Appendix
	Comparison to Information Flow Checking
	Translation

