Symbolic Polytopes for Quantitative Interpolation and Verification

Klaus v. Gleissenthall, TU Munich joint work with Andrey Rybalchenko, Microsoft Research and Boris Köpf, IMDEA

Verification

Quantitative verification

Quantitative reachability property

To prove: at most k states are reachable

Observables, call-sites, memory locations

size(Reachable states) $\leq k$

- · Constraint solving problem
- · Quantitative interpolation
- Symbolic polytopes and generating functions

Program as formula

int v;

main(int k) {
 init(v,k);
 while (1) step(v);
}

step(v, v')

init(v,k)

Quantitative verification is a logic problem

Simple yet expressive

Unfold, guess, and check

Bounded problem is interpolation

[Craig'57, McMillan'03]

Find *h*:

 $low(...) \rightarrow h(...)$

 $h(\dots) \to hi(\dots)$

Quantitative extension: Find *h*:

$$low(\dots) \to h(\dots)$$

 $size\{h\} \le k$ From size to set

Interpolants as polytopes

- · Integer points represented by linear inequalities
- · Model for numeric data types

$$0 \le x \land 0 \le y \land x + y \le 2$$

$$size\{(x, y) \mid ... \} = 6$$

Generating functions

• Generating function $P(i,j) = i^0 j^2 + i^0 j^1 + \cdots$

• One term per point, P(1,1) = 6 = size

Decomposition [Brion'88, Barvinok'93]

• Rational function $P(i,j) = \frac{i^0 j^2}{(1 - i^0 j^{-1})(1 - i^1 j^{-1})}$

- P(1,1) = 6 = size
- One term per vertex

 $+ \cdots$

Quantitative interpolation w/o size

Find *h* given by *a*,*b*,*c*,*d*,*e*,*f*,...:

 $low(...) \rightarrow h(...)$

 $P(1,1) \leq k$

Evaluation

Program	Bound	Time
Dis1 [21]	$max(n-x_0,0)+max(m-y_0,0)$	0.19s
Dis2 [21]	$n-x_0+m-z_0$	0.17s
SimpleSingle [21]	n	0.11s
SequentialSingle [21]	n	0.11s
NestedSingle [21]	n + 1	0.15s
SimpleSingle2 [21]	max(n,m)	0.13s
SimpleMultiple [21]	n+m	0.16s
NestedMultiple [21]	$max(n-x_0,0)+max(m-y_0,0)$	0.08s
SimpleMultipleDep [21]	$n \cdot (m+1)$	0.15s
NestedMultipleDep [21]	$n \cdot (m+1)$	0.09s
IsortList [23]	$n^2 \cdot m$	0.19s
LCS [23]	$n \cdot x$	0.15s
Example 1 [41]	n	0.15s
Sum [24]	2n + 6	0.15s
Flatten [24]	8l+8	0.13s

Find h:

