
An Epistemic Perspective
on Consistency of

Concurrent Computations
Klaus v. Gleissenthall1 and Andrey Rybalchenko1,2

1 TUM
2 MSR Cambridge

Saturday, August 24, 13

Consistency Properties
‣ Whenever read or write shared data

at different location

‣ Need to arrive consensus

‣ Specify how much inconsistency is
tolerated before

Saturday, August 24, 13

Consistency Properties
Memory

Sequential Consistency/
TSO/
PSO ...

Processor
Cache

Saturday, August 24, 13

Consistency Properties
Concurrent

Data-structures
Queue/
Set/...

Linearizability

java.util.concurrent

Non-
blocking

Cached
Values

Saturday, August 24, 13

Consistency Properties
Geo-replicated Databases

NoSQLDifferent
revisions

Eventual Consistency

Saturday, August 24, 13

Consistency Properties

Different formalisms:
permutation / partial-order / operational

Sequential Consistency/
TSO ... Linearizability Eventual Consistency

Saturday, August 24, 13

Knowledge Perspective

Epistemic Logic
models logic

knowledge

Distributed systems own conference
 series (TARK)

Saturday, August 24, 13

Distributed Knowledge

E ⊧DG(φ)

group G of
participantsHalpern and Moses,

JACM, 1990

Distributed
Knowledge

trace E
Share everything

 you know

Saturday, August 24, 13

What do we get?

‣ Very similar form:

E ⊧¬DG(¬correct)

Sequential
specification

of shared data-structure

For memory:
read last write

don’t get caught
cheating

Saturday, August 24, 13

Sequential consistency: E ⊧¬DTHREADS(¬correct)

Linearizability: E ⊧¬DTHREADS∪{obs}(¬correct)

Eventual consistency: E ⊧¬DTHREADS(¬correctEVC)

What do we get?
‣Compare Conditions:

Saturday, August 24, 13

Sequential consistency: E ⊧¬DTHREADS(¬correct)

Linearizability: E ⊧¬DTHREADS∪{obs}(¬correct)

Eventual consistency: E ⊧¬DTHREADS(¬correctEVC)

What do we get?

additional
knowledge

reduction‣Compare Conditions:

Saturday, August 24, 13

Outline
‣Sequential Consistency

‣Epistemic Knowledge

‣Eventual Consistency

‣A Theorem

Saturday, August 24, 13

 Sequential-Consistency

Saturday, August 24, 13

Sequential Consistency

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

reason about
traces

is this consistent ?

arranged by order
of return

Saturday, August 24, 13

Sequential Consistency

The result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual

processor appear in this sequence in the order
specified by its program.

Saturday, August 24, 13

Sequential Consistency

 E is equivalent to E' and
E' correct wrt. some sequential

specification

permutations preserving
 program order

Alternative def. from literature

reads return
last write

Saturday, August 24, 13

Sequential Consistency

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

E’ ∶= (t2, ld(0)) (t1,st(1)) (t2, ld(1))

✓
reads return
last write

Saturday, August 24, 13

Knowledge Perspective

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

t1 “knows” that it
stored 1

t2 “knows” that it
loaded 0 and then 1

but: nothing about the
other thread

Saturday, August 24, 13

Knowledge Perspective

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

 {t1,t2} know the conjunction of
these facts

 i.e., which operations were performed
 but not their order

Saturday, August 24, 13

Knowledge Perspective

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

E ⊧¬D{t1,t2}(¬ correctMem)

read
last write

sequentially
consistent

Saturday, August 24, 13

Local views

↓t1 ↓t2
projection

onto
t2’s view

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

(t1, st(1)) (t2, ld(0)) (t2, ld(1))

Saturday, August 24, 13

Indistinguishability

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

E’ ∶= (t2, ld(0)) (t1, st(1))

✓∼t1 ∼t2✕

E ∼t E’ iff: E↓t = E’↓t

Saturday, August 24, 13

Group Indistinguishability

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

E’ ∶= (t2, ld(0)) (t1, st(1))

∼G∶= (⋂a∈G ∼a)

∼ {t1,t2} ✕

Saturday, August 24, 13

Group Indistinguishability

E ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

∼G∶= (⋂a∈G ∼a)

∼ {t1,t2}

E’ ∶= (t2, ld(0)) (t1,st(1)) (t2, ld(1))

✓

Saturday, August 24, 13

Distributed Knowledge

E ⊧ DG(φ) :iff for all E′ s.t. E ∼G E′: E′ ⊧ φ

threads can’t tell which trace
they really saw

if phi holds for all those traces,
they know phi

Saturday, August 24, 13

Sequential Consistency
E ⊧DG(φ) :iff for all E′ s.t. E ∼G E′: E′ ⊧ φ

E ⊧¬DTHREADS(¬correct)
:iff exists E′ s.t. E ∼Threads E′ and E′ ⊧ correct

The threads can’t tell E
from a correct trace A good reason to accept it!

Saturday, August 24, 13

Sequential Consistency

E ⊧¬DTHREADS(¬correct)
:iff exists E′ s.t. E ∼Threads E′ and E′ ⊧ correct

 E is equivalent to E' and
E' correct wrt. some sequential

specification

Saturday, August 24, 13

 Eventual-Consistency

Saturday, August 24, 13

Eventual Consistency
‣ Geo-replicated database systems

(Google/Facebook ...)

‣ Different location need to maintain
consistent view of data

‣ However must be highly available

‣ Minimize synchronization, allow
updates any time

Saturday, August 24, 13

Original Definition

7 Eventual Consistency

In this section we present our logical characterization of eventual consistency.
We define the set of actions for eventual consistency as:

A ∋ act ∶= qu(id , q, r) � up(id , u) � com(id) � fwd(t, t′, id).
Threads may pose a query (qu) q ∈ Queries with a result r ∈ Values, issue
an update (up) u ∈ Updates, or commit (com) their local changes. Queries,
update, and commits get assigned a revision-id id ∈ Identifiers, representing
the current state of the local database copy. We assume that if a thread commits,
the committed revision id matches the revision id of the previous queries and
updates, and that thread-revision-id pairs (t, id) are unique. Again, this is no
restriction. To fulfill the requirement, the threads can just increment their local
revision id whenever they commit. As updates may get lost in the network,
we represent by fwd(t, t′, id) the successful forwarding of the updates made by
thread t in revision id to thread t

′.

Preliminaries We let let set(E) = {e ∈ E}, i.e. the set of events in trace E. On a
fixed trace E, we define the program order �p as e �p e′ :i↵ if there is t such that
pos(e,E ↓ t) < pos(e′,E ↓ t). Let e ≡t e′ if and only if there is id ∈ Identifiers
such that e = (t, (id ,)) and e

′ = (t, (id ,)) i.e. if the events belong to the same
revision of thread t. A relation � factors over ≡t if x � y, x ≡t x

′ and y ≡t y

′
imply x

′ � y′. Updates are interpreted in terms of states i.e., we assume there is
an interpretation function u

∶ States → States, for each u ∈ Updates, and
a designated initial state s0 ∈ States. For each query q ∈ Queries, there is an
interpretation function q

∶ States → Values. For a finite set of events ES , a
total order � over the events in ES , and a state s we let apply(Es,�, s) be the
result of applying all updates in Es to s, in the order specified by �.
Definition 4 (Eventual Consistency). We adapt the definition presented in
[4] to our notation. A trace E ∈ E∞ is eventually consistent (evCons(E)) if
and only if there exist a partial order �v (visibility order), and a total order �a
(arbitration order) on the events in set(E) such that:

– �v⊆�a (arbitration extends visibility).

– �p⊆�v (visibility is compatible with program-order).

– for each eq = (t, qu(id , q, r)) ∈ E, we have r = apply({e � e �v eq},�a, s0)
(consistent query results).

– �a and �v factor over ≡t (atomic revisions).

– if (t, com(id)) �∈ E and (t, (id ,)) �v (t′,) then t = t

′ (uncommitted up-
dates).

– if e = (t, com(id)) ∈ E then there are only finitely many e

′ ∶= (t′, com(id ′))
such that e′ ∈ E and e ��v e

′ (eventual visibility).

14

Existence of two orders

Saturday, August 24, 13

Our Version

E ⊧¬DTHREADS(¬correctEVC)

Participants don’t know it
violates

temporal/sequential specification

Saturday, August 24, 13

Eventual Consistency

correctEVC ∶= ∀t∀q∀r (
⊟(query(t, q, r) → ∃L(L validLog t ∧

 result(q,L, r))))
∧ atomicTrans ∧ alive ∧ fwd

“so far”

results are justified
by consistent logs

Saturday, August 24, 13

Eventual Consistency

L validLog t ∶= ∀a(a in L ↔ t klog a)
∧ consistent (L)

log order matches
concensus

t knows astore/load

Saturday, August 24, 13

Eventual Consistency
(E,i) ⊧ t klog a :iff

there is j ≤i∶(E@j =(t,a) or
((E,j) ⊧ forward(t′,t,id) and

there is l < j ∶(E,l) ⊧ commit(t′,id) and
(E,l) ⊧ t′ klog a))

Saturday, August 24, 13

A theorem

Saturday, August 24, 13

Axioms of knowledge

(T) ∶= ⊧ DG(φ) → φ (Truth axiom)

(4) ∶= ⊧ DG(φ) →DG(DG(φ)) (Pos. Introspection)

(5) ∶= ⊧ ¬DG(φ) →DG(¬DG(φ)) (Neg. Introspection)

Saturday, August 24, 13

Knowledge about
Consistency

seqCons := ¬DTHREADS(¬correct)

lin:= ¬DTHREADS∪{obs}(¬correct)

Saturday, August 24, 13

⊧ (seqCons ↔DThreads(seqCons)) ∧
(¬seqCons ↔ DThreads(¬seqCons)).

Knowledge about
Consistency

Saturday, August 24, 13

⊧ ¬Lin ↔DThreads⊎{obs}(¬Lin)

Knowledge about
Consistency

but
exists E: E ⊧ Lin ∧ ¬DThreads⊎{obs}(Lin))

Saturday, August 24, 13

Conclusion
‣ Ramification of consistency

guarantees are notoriously oblique

‣ We provide declarative spec

‣Uncover non-trivial relations between
properties

‣ Previously unstudied perspective on
consistency

Saturday, August 24, 13

Thank you!

Saturday, August 24, 13

Future Work
‣Observational refinement

‣Exploit Epistemic Logic Theory

‣Other properties in Epistemic Logic

‣Model-check logic to check arbitrary
properties

Saturday, August 24, 13

Eventual Consistency

alive ∶= ∀t∀t′∀id
(⊟(commit(t,id) ∧ ◇ (∃id′

(commit(t′, id′))) →
◇forward(t, t′,id)))

Saturday, August 24, 13

The observer’s
indistinguishability

relation
obs(E) = {(r,c) ∈ RET × CALL ∣ pos(r,E) < pos(c,E)}

E ∼obs E′ :iff obs(E) ⊆ obs(E′)

Saturday, August 24, 13

The observer
E ∶= (t2,call ld())(t2,ret ld(1))(t1,call st(1)) (t1,ret

st(TRUE))

obs(E) = {((t2,ret ld(1)) , (t1,call st(1)))}

The observer’s view is the order of non-
overlapping method calls

Saturday, August 24, 13

The observer
E ∶= (t2,call ld())(t1,call st(1)) (t2,ret ld(1)) (t1,ret

st(TRUE))

obs(E) = {}

The observer’s view is the order of non-
overlapping method calls

Saturday, August 24, 13

Linearizability
E ⊧¬DTHREADS∪{obs}(¬correct)

:iff exists E′ s.t. E ∼Threads∪{obs} E′and E′ ⊧ correct

t1
t2

ld(1)
st(1)

t1
t2

ld(1)
st(1)

t1
t2

ld(1)
st(1)

Saturday, August 24, 13

Syntax

φ∶∶= p ∣ φ∧φ ∣ ¬φ ∣ ⊖φ ∣ φSφ ∣ φUφ ∣ DGφ ∣∀x(φ)

proposition

basic temporal

knowledge

quantification

Since Until

Φ ∋

In the last time-step

Saturday, August 24, 13

Semantics
(E, i)⊧φ ∧ ψ :iff (E, i) ⊧ φ and (E, i) ⊧ ψ
(E, i)⊧¬φ :iff not(E, i) ⊧ φ

(E,i)⊧⊖φ :iff i>0 and (E,i−1)⊧φ
(E,i)⊧φSψ :iff (E,i)⊧ φUψ :iff
there is j ≤ i s.t. (E,j) ⊧ ψ and for all j < k ≤ i ∶ (E,k) ⊧ φ

(E, i) ⊧ DGφ :iff for all (E′, i′): if (E, i) ∼G (E′, i′) then
(E′,i′) ⊧ φ

(E,i) ⊧ ∀x(φ) :iff for all d ∈ D ∶ (E,i) ⊧ φ[d/x]

Saturday, August 24, 13

TSO Consistency

E ⊧¬DTHREADS(¬correctTSO)

Saturday, August 24, 13

Read from the buffer

locallyLatest(t, a, v) := ¬(∃v′
store(t, a, v’)) S store(t, a, v))

If you read from the store
buffer, you need to read the

latest value stored

Saturday, August 24, 13

TSO Consistency
correctTSO:=

FlushOrder∧
∀t∀a∀v
(⊟(load(t,a,v) →
(ldBuff(t,a,v) ∨ ldMem(t,a,v))))

“so far”

load from
buffer

load from memory

flush in Fifo-
order

Saturday, August 24, 13

Basic Predicates

(E,i) ⊧ store(t, a,v) :iff E@i = (t, st(a, v))
(E,i) ⊧ load(t,a,v) :iff E@i = (t,ld(a,v))
(E,i) ⊧ flush(t,a,v) :iff E@i = (msys,fl(t,a,v))

E inspected at
position i ∈ N

Event at
position i

The memory system
flushed a value

We need
positions for

time
Saturday, August 24, 13

Joseph Y. Halpern and Yoram Moses. Knowledge
and common knowledge in a distributed environment.

Journal of the ACM,37(3):549-587,1990.

Saturday, August 24, 13

http://dl.acm.org/author_page.cfm?id=81100537160&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292
http://dl.acm.org/author_page.cfm?id=81100537160&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292
http://dl.acm.org/author_page.cfm?id=81361605118&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292
http://dl.acm.org/author_page.cfm?id=81361605118&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292
http://dl.acm.org/citation.cfm?id=79161
http://dl.acm.org/citation.cfm?id=79161
http://dl.acm.org/citation.cfm?id=79161
http://dl.acm.org/citation.cfm?id=79161
http://dl.acm.org/author_page.cfm?id=81100537160&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292
http://dl.acm.org/author_page.cfm?id=81100537160&coll=DL&dl=ACM&trk=0&cfid=159560431&cftoken=78604292

